Skip to main content
Log in

Michaelis-Menten kinetics model of oxygen consumption by rat brain slices following hypoxia

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In the present study, we have measured partial pressure of oxygen (pO2) profiles through rat brain slices before and after periods of hypoxia (5 and 10 min) to determine its effect on tissue oxygen demand. Tissue pO2 profiles were measured through rat cerebral cortex slices superfused with phosphate buffer using oxygen (O2)-sensitive microelectrodes at different times in controls [40% O2 balance nitrogen (N2)], and at different times before and after 5 or 10 min of hypoxia (100% N2). A one-dimensional, steady-state model of ordinary diffusion with a Michaelis-Menten model of O2 consumption where the maximal O2 consumption (Vmax) and the rate at half-maximal O2 consumption (Km) were allowed to vary was used to determine the kinetics of O2 consumption. Actual pO2 profiles through tissue were fitted to theoretical profiles by a least-squares method. Vmax varied among penetrations in a control slice and among slices. Vmax seemed to decrease after hypoxic insult, but the change was not statistically significant. The Km value measured before hypoxia was lower than the first Km value measured after the end of hypoxia, indicating that hypoxia induced a compensatory change in the metabolic state of the tissue. Km increased immediately after both 5- and 10-min hypoxic insults and returned to normal after recovery for each case. It seems that during and immediately after short periods of hypoxia, Km increases from near zero but returns to normal values within a few minutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bicher, H.I., D.D. Reneau, D.F. Bruley, and M.H. Knisely. Brain oxygen supply and neuronal activity under normal and hypoglycemic conditions.Am. J. Physiol. 224: 275–282, 1973.

    PubMed  CAS  Google Scholar 

  2. Buerk, D.G., and P. Nair. PtiO2 and CMRO2 changes in cortex and hippocampus of aging gerbil brain.J. Appl. Physiol. 74:1723–1728, 1993.

    PubMed  CAS  Google Scholar 

  3. Buerk, D.G., and G.M. Saidel. Local kinetics of oxygen metabolism in brain and liver tissues.Microvasc. Res. 16: 391–405, 1978.

    Article  PubMed  CAS  Google Scholar 

  4. Chance, B., A. Mayevsky, C. Goodwin, and L. Mela. Factors in oxygen delivery to tissue.Microvasc. Res. 8:276–282, 1974.

    Article  PubMed  CAS  Google Scholar 

  5. Clark, J.B., W.J. Nicklas, and H. Degn. The apparent km for oxygen of rat brain mitochondrial respiration.J. Neurochem. 26:409–411, 1976.

    Article  PubMed  CAS  Google Scholar 

  6. Cronk, J., and R.W. Schubert. Michaelis-Menten-like kinetics in the Krogh tissue cylinder.Adv. Exp. Med. Biol. 180: 499–510, 1984.

    PubMed  CAS  Google Scholar 

  7. Duffy, T.F., S.R. Nelson, and O.H. Lowry. Cerebral carbohydrate metabolism during acute hypoxia and recovery.J. Neurochem. 19:959–977, 1972.

    Article  PubMed  CAS  Google Scholar 

  8. Ganfield, R.A., P. Nair, and W.J. Whalen. Mass transfer, storage, and utilization of O2 in cat cerebral cortex.Am. J. Physiol. 219:814–821, 1970.

    PubMed  CAS  Google Scholar 

  9. Homer, L.D., J.B. Shelton, and T.J. Williams. Diffusion of oxygen in slices of rat brain.Am. J. Physiol. 244:R15-R22, 1983.

    PubMed  CAS  Google Scholar 

  10. Hossmann, K., S. Sakaki, and K. Kimoto. Cerebral uptake of glucose and oxygen in the cat brain after prolonged ischemia.Stroke 7:301–305, 1976.

    CAS  Google Scholar 

  11. Kass, I.S., and P.I. Lipton. Mechanisms involved in irreversible anoxic damage to thein vitro rat hippocampal slice.J. Physiol. 332:459–472, 1982.

    PubMed  CAS  Google Scholar 

  12. Krnjevic, K., and W. Walz. Acidosis and blockade of orthodromic responses caused by anoxia in rat hippocampal slices at different temperatures.J. Physiol. 422:127–144, 1990.

    PubMed  CAS  Google Scholar 

  13. Kuschinsky, W., S. Suda, and L. Sakoloff. Depression of local cerebral glucose utilization by metabolic acidosis. In: Cerebral microcirculation and metabolism, edited by J. Cervos-Navarro and K. Eritschka. New York, Raven Press, 1981, pp. 255–258.

    Google Scholar 

  14. Leniger-Follert, E. Direct determination of local oxygen consumption of the brain cortex in vivo.Pfleugers Arch. Eur. J. Physiol. 371:175–177, 1977.

    Article  Google Scholar 

  15. Lentini, M., and V. Pereyra. An adaptive difference solver for nonlinear two-point boundary value problems with mild boundary layers.Siam J. Numer. Anal. 14:91–111, 1977.

    Article  Google Scholar 

  16. Longmuir, I.S., D.C. Martin, H.J. Gold, and S. Sun. Nonclassical respiratory activity of tissue slices.Microvasc. Res. 3:125–141, 1971.

    Article  PubMed  CAS  Google Scholar 

  17. Nair, P.K., D.G. Buerk, and J.H. Halsey. Microregional pH changes in ischemic gerbil brain.Fed. Proc. 45:1007, 1986.

    Google Scholar 

  18. Nair, P.K., D.G. Buerk, and J.H. Halsey. Comparisons of oxygen metabolism and tissue PO2 in cortex and hippocampus of gerbil brain.Stroke 18:616–622, 1987.

    PubMed  CAS  Google Scholar 

  19. Napper, S., and R.W. Schubert. Mathematical evidence for flow-induced changes in myocardial oxygen consumption.Ann. Biomed. Eng. 16:349–365, 1988.

    Article  PubMed  CAS  Google Scholar 

  20. Nelder, J.A., and R. Mead. A simplex method for function minimization.Comput. J. 7:308–313, 1965.

    Google Scholar 

  21. Patel, K.K., J.F. Hartmann and C.C. Cohen. Ultrastructural estimation of relative volume of extracellular space in brain slices.J. Neurol. Sci. 12:275–288, 1971.

    Article  PubMed  CAS  Google Scholar 

  22. Rosenthal, M., D. Martel, J.C. LaManna and F.F. Jobsis. In situ studies of oxidative energy metabolism during transient cortical ischemia in cat.Exp. Neurol. 50:477–494, 1976.

    Article  PubMed  CAS  Google Scholar 

  23. Schiff, s.J., and G.G. Somjen. Overshoot of oxygen pressure in post-hypoxic brain tissue: a reevaluation.Brain Res. 344:150–153, 1985.

    Article  PubMed  CAS  Google Scholar 

  24. Schurr, A., and B.M. Rigor. Cerebral ischemia revisited: new insights as revealed using in vitro brain slice preparations.Experientia 45:684–695, 1989.

    Article  PubMed  CAS  Google Scholar 

  25. Siesjo, B.K. Brain Energy Metabolism. New York: John Wiley and Sons, 1978, p. 607.

    Google Scholar 

  26. Sims, N.R., and W.A. Pulsinelli. Altered, mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat.J. Neurochem. 49: 1367–1374, 1987.

    Article  PubMed  CAS  Google Scholar 

  27. Smith, D.A., W. Levy, M. Maris, and B. Chance. Reperfusion hyperoxia in brain after circulatory arrest in humans.Anesthesiology 73:12–19, 1990.

    Article  PubMed  CAS  Google Scholar 

  28. Snow, T.R., L.H. Kleinmann, J.C. LaManna, A.S. Wechsler, and F.F. Jobsis. Response of cyt a, a3 in thein situ canine heart to transient ischemic episodes.Bas. Res. Cardiol. 76:289–304, 1981.

    Article  CAS  Google Scholar 

  29. Vanderkooi, J.M., M. Erecinska, and I. Silver. Oxygen in mammalian tissue: methods of measurement and affinities of various reactions.Am. J. Physiol. 260:C1331-C1150, 1991.

    Google Scholar 

  30. Whalen, W.J., P. Nair, and R.A. Ganfield. Measurements of oxygen tension in tissues with a micro oxygen electrode.Microvasc. Res. 5:254–262, 1973.

    Article  PubMed  CAS  Google Scholar 

  31. Wilson, D.F., W.L. Rumsey, T.J. Green, and J.M. Vanderkool. The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration.J. Biol. Chem. 263: 2712–2718, 1988.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGoron, A.J., Nair, P. & Schubert, R.W. Michaelis-Menten kinetics model of oxygen consumption by rat brain slices following hypoxia. Ann Biomed Eng 25, 565–572 (1997). https://doi.org/10.1007/BF02684195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02684195

Keywords

Navigation