Skip to main content
Log in

EPR spectroscopy of low-dimension structures produced in natural diamonds and synthetic diamond films by ion implantation (review)

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

We give a brief overview of the results of investigations that gave birth to new trends in radiospectroscopy, physics of interactions of atomic particles with condensed materials, and solid-state physics, especially, physics of superhard materials. The main factors that provided the basis for these trends are as follows.

  1. 1.

    High-energy ion implantation into solids plays a constructive role with respect to the solid matrix. A modified structure composed of matrix atoms and characterized by both short-range and long-range orders different from the initial one is formed as a result of this implantation. Low-dimension systems of a new class, whose properties are described in the present work, were produced in diamonds. A distinguishing feature of this new class of elements is that one-dimensional elements possesing their own spatial ordering of atoms constitute a volume superlattice composed of the same atoms in a three-dimensional crystalline matrix.

  2. 2.

    Radiospectroscopy methods can be used to identify formations with sizes greater than 0.1 μm in one dimension (along with traditional objects with sizes within the nanorange in three dimensions) and study their properties. These objects are characterized by a number of essentially new radiospectroscopic properties: superlinear kinetics of resonance absorption, an additional nonzero phase angle in the recorded absorption signal relative to the hf modulation field in the absence of saturation, (“phase angle”), an anomalous increase in the intensity of absorption with an increase in the modulation frequency of the static field (in the absence of saturation), and a super-Lorentizian shape of the resonance absorption line. These properties provide a basis for radiospectroscopic identification of mobile quasiparticles with nonzero spin (like to solitons) in solids.

  3. 3.

    A system of “channels” with high electroconductivity (in the microwave range) can be produced in dielectric solids, specifically in superhard materials. Individual channels can have cross-sectional sizes of up to sizes of the nanorange. This can serve as a basis for the development of electronic devices with elements having cross-sectional sizes that are significantly smaller than those of elements of traditional microelectronics as small as the sizes of elements of nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. P. Erchak, N. M. Penina, V. F. Stelmakh, V. P. Tolstykh, and A. M. Zaitsev, in: Abstracts of Reports to the 7th International Conference on Ion Beam Modification of Materials, Knoxville, USA (1990), p. 313.

  2. V. G. Efimov, D. F. Ertchak, R. B. Gelfand, N. M. Penina, V. F. Stelmakh, V. S. Varichenko, A. G. Ulyashin, and A. M. Zaitsev, in: Abstracts of Reports to the E-MRS-90 Fall Meeting, Strasburg, France (1990), C.-V/P12.

  3. D. P. Erchak, V. G. Efimov, A. M. Zaitsev, V. F. Stelmakh, N. M. Penina, V. S. Varichenko, and V. P. Tolstykh, Nucl. Instrum. Methods,B69, 443–451 (1992).

    Article  Google Scholar 

  4. P. R. Brosious, J. W. Corbett, and J. C. Bourgoin, Physica Status Solidi (a),21, 677 (1974).

    Article  Google Scholar 

  5. P. R. Brosious, Y. H. Lee, J. W. Corbett, and L. J. Cheng, Physica Status Solidi (a),25, 541 (1974).

    Article  Google Scholar 

  6. Y. H. Lee, P. R. Brosious, and J. W. Corbett, Physica Status Solidi, (a)50, 237 (1978).

    Article  Google Scholar 

  7. D. P. Erchak, R. B. Gelfand, N. M. Penina, V. F. Stelmakh, V. P. Tolstykh, A. G. Ulyashin, V. S. Varichenko, and A. M. Zaitsev, Physica Status Solidi (a),121, 63–72 (1990).

    Article  Google Scholar 

  8. V. S. Varichenko, A. Yu. Didyk, V. A. Martinovich, D. P. Ertchak, N. M. Penina A. M. Zaitsev, V. F. Stel’makh, and W. R. Fahrener, Paramagneti Properties of Diamond Modified by High-energy Ion Irradiation [in Russian], Preprint of the Joint Institute for Nuclear Research of the Russian Academy of Sciences, P14-95-181, Dubna (1995).

  9. D. P. Erchak, V. A. Martinovich, V. S. Varichenko, N. M. Penina, V. G. Efimov, A. M. Zaitsev, S. A. Fedotov, W. R. Fahrner, and V. F. Stelmakh, in Abstracts of Reports to the International Conference on Ion Beam Modification of Materials, Australia (1995).

  10. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rew. Lett.,42, 1898 (1979).

    Google Scholar 

  11. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. B,22, 2099 (1980).

    Article  ADS  Google Scholar 

  12. A. G. MacDiarmid and A. J. Heeger, in: Molecular Electronic Devices, New York and Basel (1982), pp. 259–271.

  13. S. Kivelson and D. E. Heim, Phys. Rev. B26, 4278 (1982).

    Article  ADS  Google Scholar 

  14. A. J. Heeger, S. Kivelson, and J. R. Schrieffer, Rev. of Mod. Phys.,60, No. 3, 781–850 (1988).

    Article  ADS  Google Scholar 

  15. M. J. Rice, S. R. Phillpot, A. R. Bishop, and D. K. Campbell, Phys. Rev. B34, No. 6, 139–149 (1986).

    Article  Google Scholar 

  16. D. P. Erchak, V. G. Efimov, I. I. Azarko, A. V. Denisenko, N. M. Penia, V. F. Stelmakh, V. S. Varichenko, A. M. Zaitsev, A. A. Melnikov, A. G. Ulyashin, N. V. Shlopak, L. L. Bouilov, V. P. Varnin, A. A. Botev, G. A. Sokolina, and I. G. Teremetskaya, Diamond & Related Materials,2, 1164 (1993).

    Article  Google Scholar 

  17. D. Fink, L. T. Chadderton, F. Hosoi, H. Omichi, T. Sasuga, A. Schmoldt, L. Wang, R. Klett, and J. Hillinbround, Nuclear Instruments & Methods in Physics Research,B91, 146–150 (1994).

    Article  ADS  Google Scholar 

  18. I. I. Azarko, V. Hnatowicz, I. P. Kozlov, E. I. Kozlova, V. B. Odzhaev, and V. N. Popok, Physica Status Solidi (a),146, 23–27 (1994).

    Article  Google Scholar 

  19. V. B. Odzhaev, I. I. Azarko, I. A. Karpovich, I. P. Kozlov, V. N. Popok, D. V. Sviridov, V. Hnatowicz, O. N. Jankovskij, V. Rybka and V. Svorcik, Material Letters,23, 163–166 (1995).

    Article  Google Scholar 

  20. S. Wang and P. R. Buseck, Chem. Phys. Lett.,182, 1 (1991).

    Article  ADS  Google Scholar 

  21. J. Kastner and L. Palmetshofer, Fullerene Science & Technology,4, 179–200 (1996).

    Google Scholar 

  22. M. B. Guseva, N. F. Savchenko, and V. G. Babaev, Radiation Effects Letters,87, 215–244 (1986).

    Article  Google Scholar 

  23. V. G. Babaev, M. B. Guseva, and V. V. Khvostov, in: Proceedings of International Conference on Ion Implantation and Ion Beam Equipment, Elenite, Bulgaria (1990), World Scientific, Singapore, New Jersey, London, Hong Kong (1991), pp. 437–457.

    Google Scholar 

  24. C. Spinella, F. Priolo, S. Lombardo, S. Campisano, and E. Rimini, in: “Ion Beam Modification of Materials,” Proceedings of 7th International Conference on IBMM, Knoxville, USA (1990), part I, ed. by S. P. Withrow and D. B. Poker, North-Holland (1991), pp. 363–371.

  25. R. R. Hart, R. P. Vijay, and J. D. Rubio, in: “Ion Beam Modification of Materials,” Proceedings of 7th International Conference on IBMM, Knoxville, USA (1990), part I, ed. by S. P. Withrow and D. B. Poker, North-Holland (1991), pp. 427–430.

  26. A. Golanski, W. H. Christie, M. D. Galloway, J. L. Park, S. Park, S. J. Pennycook, D. B. Poker, J. L. Moore, H. E. Harman, and C. W. White, in: “Ion Beam Modification of Materials”, Proceedings of 7th International Conference on IBMM, Knoxville, USA (1990), part I, ed. by S. P. Withron and D. B. Poker, North-Holland (1991), pp. 444–448.

  27. T. Venkatesan, R. P. Livi, T. C. Banwell, T. A. Tombrello, M. A. Nicolet, R. Hamm, and A. E. Meixner, in: “Ion Beam Processes in Advanced Electronic Materials and Device Technology,” Proceedings of Materials Research Society Symposia,45, MRS, Pittsburgh (1985), p. 189.

    Google Scholar 

  28. M. Dobelli, T. J. Jones, A. Lee, R. P. Livi, and T. A. Tombrello, Brown Bag Preprint Series in Basic and Applied Science, BB-96, 30 (1990).

    Google Scholar 

  29. M. B. Guseva, Izv. Akad. Nauk SSSR, Ser. Fiz.,50, 459 (1986).

    Google Scholar 

  30. M. B. Guseva, V. G. Babaev, N. N. Nikiforova, and H. F. Savchenko, in: Problems of Atomic Science and Technology [in Russian], Khar’kov (1983), p. 92.

  31. L. S. Palatnik, M. B. Guseva, V. G. Babaev, N. F. Savchenko, and I. I. Fal’ko, Zh. Éksp. Teor. Fiz.,87, 914 (1984).

    ADS  Google Scholar 

  32. Yu. P. Kudryavtsev, S. E. Evsyukov, M. B. Guseva, V. G. Babaev, and V. V. Khvostov, Izv. Akad. Nauk SSSR, Ser., Khim., No. 3, 450–463 (1993).

    Google Scholar 

  33. D. P. Erchak, V. G. Efimov, I. A. Karpovich and V. F. Stelmakh, in: Abstracts of Reports to the Conferences” ICNDST-3” and “Diamond Films-92”, Heidelberg, FRG (1992), No. 8, p. 187.

  34. D. P. Ertchak, V. G. Efimov, V. F. Stelmakh, V. A. Martinovich, A. F. Alexandrov, M. B. Guseva, N. M. Penina, V. S. Varichenko, I. A. Karpovich, A. M. Zaitsev, W. R. Fahrner, and D. Fink, Physica Status Solidi, A Vol. 203, No. 2.

  35. M. Weger, The Bell System Technical Journal, July, 1013 (1960).

    Google Scholar 

  36. C. Boivin, C. Jacolin, and J. Y. Savard, Review Scientific Instruments,44, 191 (1973).

    Article  ADS  Google Scholar 

  37. D. P. Ertchak, I. Z. Rutkovskii, V. F. Stel’makh, and G. G. Fedoruk, in: Problems of Atomic Science and Technics [in Russian], Khar’kov (1982), 2(21), pp. 79–81.

  38. G. G. Fedoruk, I. Z. Rutkovskii, D. P. Yerchak, and V. F. Stel’makh, Zh. Éksp. Teor. Fiz.,80, No. 5, 2004–2009 (1981).

    Google Scholar 

  39. C. Barklie and J. J. Guven, J. of Physics C,14, 3621 (1981).

    Article  Google Scholar 

  40. A. Abragam. The Principles of Nuclear Magnetism, Oxford Univ. Press, London (1961).

    Google Scholar 

  41. D. P. Ertchak, V. P. Strigutskii, V. P. Tolstykh, and Chan Khong N’yung, Zh. Prikl. Spektrosk.,22, 951 (1975).

    Google Scholar 

  42. I. B. Goldberg, H. R. Crowe, P. R. Newman, A. J. Heeger, and A. G. MacDiarmid, J. of Chem. Phys.,70, 1132 (1979).

    Article  ADS  Google Scholar 

  43. B. Kirtman, M. Hasan, and D. M. Chipman, J. of Chem. Phys.,95, No. 10, 7698–7681 (1991).

    Article  ADS  Google Scholar 

  44. A. L. Chugreev and I. A. Misurkin, Zh. Strukt Khim.,30, 24–28 (1989).

    Google Scholar 

  45. N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev., 73, 697 (1948).

    Article  ADS  Google Scholar 

  46. B. N. Provotorov, Zh. Éksp. Teor. Fiz.,41, 1582 (1961).

    Google Scholar 

  47. A. F. Burenkov, F. F. Komarov, M. A. Kumakhov, and M. M. Temkin, Spatial Distribution of Energy Released in Cascades of Atomic Collisions [in Russian], Moscow (1985).

  48. R. L. Fleischer, P. B. Price, and R. M. Walker, Nuclear Tracks in Solids, Principles and Application, California Univ. Press, Berkeley, Los Angeles, London (1975).

    Google Scholar 

  49. D. P. Ertchak, M. B. Guseva, A. F. Aleksandrov, H. Alexander, and A. Pilar von Pilchau, Pis’ma Zh. Éksp. Teor. Fiz.,58, No. 4, 268–271 (1993).

    ADS  Google Scholar 

  50. C. Kittel, Phys. Rev.,110, 836 (1958).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. M. H. Seavey and P. E. Tannenwald, Phys. Rev. Lett.,1, 168 (1958).

    Article  ADS  Google Scholar 

  52. D. P. Ertchak, Yu. P. Kudryavtsev, M. B. Guseva, A. F. Alexandrov, S. E. Evsyukov, V. G. Babaev, L. M. Krechko, Ju. A. Koksharov, A. N. Tichonov, L. A. Blumenfeld, and H. J. Bardeleben, Chem. Phys. Lett. (in press).

  53. D. P. Ertchak, V. S. Varichenko, V. A. Martinovich, N. M. Penina, V. S. Kiranov, V. F. Stelmakh, and A. M. Zaitsev, in: Abstracts of Reports to the Conference “Diamond-1996”, Tours, France (1996).

  54. D. P. Ertchak, V. G. Efimov, S. V. Varichenko, V. F. Stelmakh, A. M. Zaitsev, H. Alexander, and M. Wattenbach, in: Abstracts of Reports to the Conference “Diamond-1996”, Tours, France (1996).

  55. D. P. Ertchak, V. S. Varichenko, A. Yu. Didyk, V. A. Martinovich, V.S. Kiranov, V. F. Stel’makh, and A. M. Zaitsev, Paramagnetic Properties of Diamond Implanted with High-Energy Ions of Nickel, Preprint of the Joint Institute for Nuclear Research of the Russian Academy of Sciences, P14-96-232, Dubna (1996).

  56. B. R. Weinberger, E. Ehrenfreund, A. Pron, A. J. Heeger, and A. G. MacDiarmid, J. of Chem. Phys.,72, 4749 (1980).

    Article  ADS  Google Scholar 

  57. M. Nechtschein, F. Devreux, R. L. Greene, T. C. Clarke, and G. B. Street, Phys. Rev. Lett.,44, 356 (1980).

    Article  ADS  Google Scholar 

  58. K. Holczer, J. P. Boucher, F. Derveux, and M. Nechtschein, Phys. Rev. B,23, 1051 (1981).

    Article  ADS  Google Scholar 

  59. R. Kubo and K. Tomita, J. of Physical Society of Japan,9, 888 (1954).

    Article  ADS  Google Scholar 

  60. M. J. Hennessy, C. D. McElwee, and P. M. Richards, Phys. Rev. B,7, No. 3, 930 (1973).

    Article  ADS  Google Scholar 

  61. F. J. Dyson, Phys. Rev.,98, 349 (1955).

    Article  MATH  ADS  Google Scholar 

  62. A. M. Zaitsev, S. A. Fedotov, A. A. Melnikov, F. F. Komarov, W. R. Fahrner, V. S. Varichenko, and E. H. te Kaat, Nuclear Instruments & Methods in Physics Research,B82, 421 (1993).

    Article  ADS  Google Scholar 

  63. E. Dartyge, J. P. Durand, Y. Langevin, and M. Maurette, Phys. Rev. B23, 5213 (1981).

    Article  ADS  Google Scholar 

  64. T. A. Tombrello, C. R. Wie, N. Itoh, and T. Nakayama, Phys. Lett. A100, No. 1, 42–44 (1984).

    Article  ADS  Google Scholar 

  65. V.S. Varichenko, A. Yu. Didyk, A. M. Zaitsev, A. A. Mel’nikov, V. A. Skuratov, V. F. Stel’makh, V. D. Shestakov, and V. V. Tkachev, Methods of Alloying of Solids [in Russian], Inventor’s Certificate No. 1603858 A (USSR).

  66. A. M. Zaitsev, Materials Science and Engineering,B11, 179–190 (1992).

    Article  Google Scholar 

  67. A. Y. Didyk and V. S. Varichenko, Radiation Measurements,25, 119–124 (1995).

    Article  Google Scholar 

  68. V. S. Varichenko, A. M. Zaitsev, V. F. Stel’makh, V. D. Tkachev, and A. R. Chelyadinskii, High-Pressure Chamber [in Russian], Inventor’s Certificate No. 1391696 A1 (USSR).

  69. R. Katz, Nuclear Track Detection,2, 1 (1978).

    Article  Google Scholar 

  70. A. Hedin, P. Hacansson, P. Sundqvist, and R. E. Johnson, Phys. Rev. B,31, 1780 (1985).

    Article  ADS  Google Scholar 

  71. A. A. Davydov and A. I. Kalinichenko, in: Problems of Atomic Science and Technology [in Russian], Khar’kov (1985), 3, No. 36, pp. 27–29.

  72. V. S. Varichenko, A. M. Zaitsev, M. S. Rusetskii, V. F. Stelmakh, K. de Weldige, Th. Fries, K. Wandelt, A. Ju. Didyk, and V. A. Laptev, Diamond and Related Materials,3, 711–714 (1994).

    Article  Google Scholar 

  73. V. S. Vavilov, A. B. Kiv, and O. R. Niyazova, Mechanisms of Formation and Migration of Defects in Semiconductors [in Russian], Moscow (1981).

  74. D. P. Ertchak, N. M. Penina, A. M. Zaitsev, V. S. Varichenko, V. G. Efimov, V. F. Stel’makh, R. B. Gel’fand, and A. G. Ul’yashin, in: Technics of Communication Means, Proceedings of First International Seminar “Diamond Films”, Moscow (1991), pp 160–165.

  75. D. P. Erchak, A. G. Ulyashin, R. B. Gelfand, N. M. Penina, A. M. Zaitsev, V. S. Varichenko, V. G. Efimov, and V. F. Stelmakh, Nucl. Instrum. Methods in Phys. Res.,B69, 271 (1992).

    Article  ADS  Google Scholar 

  76. R. B. Heimann, Diamond & Related Materials,3, 1151–1157 (1994).

    Article  Google Scholar 

  77. Z. Ya. Kosakovskaya, L. A. Chernozatonskii, and E. A. Fedorov, Pis’ma Zh. Éksp. Teor. Fiz.,56, No. 1, 26–30 (1992).

    ADS  Google Scholar 

  78. L. A. Chernosatonskii, Z. Ja. Kosakovskaja, E. A. Fedorov, et al., Phys. Lett. A,197, 40 (1995).

    Article  ADS  Google Scholar 

  79. I. V. Stankevich and L. A. Chernozatonskii, Pis’ma Zh. Éksp. Teor. Fiz.,63, No. 8, 588–593 (1996).

    ADS  Google Scholar 

  80. M. Kosaka, T. W. Ebbesen, H. Hiura, and K. Tanigaki, Chem. Phys. Lett.,233, Nos. 1 and 2, 47–51 (1995).

    Article  ADS  Google Scholar 

  81. J. P. Hare, K. Hsu, H. W. Kroto, A. Lappas, W. Maser, A. J. Pierik, K. Prassides, R. Taylor, M. Terrones, and D. R. M. Walton, in: Extended Abstracts of Reports to the 187th Meeting of Electrochemical Society, Reno, Nevada (1995), p. 191.

  82. D. S. Bethune, C.-H. Kiang, W. A. Goddard III, R. Beyers, in: Extended Abstracts of Reports to the 187th Meeting of Electrochemical Sociaty, Reno, Nevada (1995), p. 190.

  83. X. R. Wang, X. W. Lin, M. Jarrold, V. P. Dravid, J. B. Ketterson, and R. P. H. Chang, in: Extended Abstracts of Reports to the 187th Meeting of Electrochemical Society, Reno, Nevada (1995), p. 191.

Download references

Authors

Additional information

Belarusian State University, 4, F. Skorina Ave., Minsk, 220080, Belarus. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 64, No. 4, pp. 421–449, July–August, 1997

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ertchak, D.P., Efimov, V.G. & Stelmakh, V.F. EPR spectroscopy of low-dimension structures produced in natural diamonds and synthetic diamond films by ion implantation (review). J Appl Spectrosc 64, 433–460 (1997). https://doi.org/10.1007/BF02683886

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02683886

Key words

Navigation