Skip to main content
Log in

Generalized cardinal B-splines: Stability, linear independence, and appropriate scaling matrices

  • Published:
Constructive Approximation Aims and scope

Abstract

Generalized cardinal B-splines are defined as convolution products of characteristic functions of self-affine lattice tiles with respect to a given integer scaling matrix. By construction, these generalized splines are refinable functions with respect to the scaling matrix and therefore they can be used to define a multiresolution analysis and to construct a wavelet basis. In this paper, we study the stability and linear independence properties of the integer translates of these generalized spline functions. Moreover, we give a characterization of the scaling matrices to which the construction of the generalized spline functions can be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. de Boor, R. DeVore, A. Ron (1993):On the construction of multivariate (pre-) wavelets. Constr. Approx.,9(2):123–166.

    Article  MATH  Google Scholar 

  2. A. S. Cavaretta, W. Dahmen, C. A. Micchelli (1991):Stationary subdivision, Mem. Amer. Math. Soc.,93:1–186.

    Google Scholar 

  3. S. Dahlke, W. Dahmen, V. Latour (1995):Smooth refinable functions and wavelets obtained by convolution products. Appl. Comput. Harmonic Anal.,2:68–84.

    Article  MATH  Google Scholar 

  4. S. Dahlke, V. Latour (1996):A note on the linear independence of characteristic functions of self-similar sets. Arch. Math.,66:80–88.

    Article  MATH  Google Scholar 

  5. W. Dahmen, C. A. Micchelli (1983a):Translates of multivariate splines. Linear Algebra Appl.,52/53:217–234.

    Google Scholar 

  6. W. Dahmen, C. A. Micchelli (1983b):Recent progress in multivariate splines. In: Approximation Theory IV (C. K. Chui, L. L. Schumaker, J. D. Ward, eds.). New York: Academic Press, pp. 27–121.

    Google Scholar 

  7. I. Daubechies (1988):Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math.,41:909–996.

    Article  MATH  Google Scholar 

  8. G. Fix, G. Strang (1973):A Fourier analysis of the finite element variational method, C.I.M.E. II, Ciclo Erice, 1971. In: Constructive Aspects of Functional Analysis (G. Geymonat, ed.). Rome: Edizioni Cremonese, pp. 793–840.

    Google Scholar 

  9. K. H. Gröchenig, W. R. Madych (1992):Multiresolution analysis, Haar bases and self-similar tilings of R n. IEEE Trans. Inform. Theory,38:556–568.

    Article  Google Scholar 

  10. A. Haar (1910):Zur Theorie der orthogonalen Funktionen-Systeme. Math. Ann.,69:331–371.

    Article  Google Scholar 

  11. R. Q. Jia (1984):On the linear independence of box splines. J. Approx. Theory,40:158–160.

    Article  MATH  Google Scholar 

  12. R. Q. Jia, C. A. Micchelli (1991):Using the refinement equation for the construction of pre-wavelets II: Powers of two. In: Curves and Surfaces (P. J. Laurent, A. Le Méhauté, L. L. Schumaker, eds.). New York: Academic Press, pp. 209–246.

    Google Scholar 

  13. S. Mallat (1989):Multiresolution approximation and wavelet orthonormal bases of L 2. Trans. Amer. Math. Soc.,315:69–88.

    Article  MATH  Google Scholar 

  14. A. Ron (1989):A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution. Constr. Approx.,5:297–308.

    Article  MATH  Google Scholar 

  15. H. Scheid (1991): Zahlentheorie. Zürich: Wissenschaftsverlag.

    MATH  Google Scholar 

  16. B. L. van der Waerden (1971): Algebra I. New York: Springer-Verlag.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Ronald A. DeVore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahlke, S., Latour, V. & Neeb, M. Generalized cardinal B-splines: Stability, linear independence, and appropriate scaling matrices. Constr. Approx 13, 29–56 (1997). https://doi.org/10.1007/BF02678429

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02678429

AMS classification

Key words and phrases

Navigation