Skip to main content
Log in

Influence of microstructural variations in the weldment on the high-temperature corrosion of 2.25Cr-1Mo steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In order to study the influence of microstructural variation on the oxidation of the weldment of 2.25Cr-1Mo steel, regions with different microstructures were identified by optical microscopy. The weld metal, the base metal, and the heat-affected zone (HAZ), as well as the subzones within the HAZ, i.e., the intercritical (ICR), the fine-grain bainite (FGB), and the coarse-grain bainite (CGB) regions were separated from the weldment by precise steps of metallography. Transmission electron microscopic examinations for the identification of the secondary phases in microstructurally different regions and subzones have suggested that M23C6 and M7C3 pre-cipitates form predominantly in the subzones of HAZ, whereas the Mo2C type of carbide forms exclusively in the weld-metal and base-metal regions of the weldment. However, population and distribution of the secondary phases were different in the three subzones of the HAZ. In order to understand the influence of these microstructural variations on the oxidation behavior, the various regions and subzones were oxidized at 773 and 873 K. The HAZ and its constituents were found to oxidize at much higher rates than the weld metal and the base metal. Relative compositions and morphologies of the scales were compared by scanning electron microscopy with energy-dispersive analyses of X-rays (SEM/EDX), and secondary ion mass spectrometry (SIMS). Scale formed over the weld metal shows a greater tendency for spallation, as suggested by tests monitoring acoustic emission. X-ray diffraction (XRD) patterns of the scales over these specimens were taken. Results of the SEM/EDX, SIMS, and XRD investigations suggest for-mation of inner scales with less Cr(i.e., less protective) over the HAZ than over the weld-metal and the base-metal regions. Variation in the Cr contents of the scales formed over the various regions is proposed to arise from the difference in microstructural features in different regions of the weldments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Easterling:Introduction to Physical Metallurgy of Welding, Butterworth and Co., London, 1983.

    Google Scholar 

  2. B. Chew and P. Harris:Met. Constr., 1979, May, p. 11.

  3. K. Laha, K.B.S. Rao, and S.L. Mannan:Mater. Sci. Eng. A, 1990, vol. 129, p. 183.

    Article  Google Scholar 

  4. I.J. Chilton, A.T. Price, and B. Wilshire:Met. Technol., 1986, vol. 11, p. 383.

    Google Scholar 

  5. P. Roy and T. Lauritzen:Welding J., Res. Suppl., 1986, vol. 65, p. 45s.

    Google Scholar 

  6. E. Smith, B.E. Blanchard, and R.L. Apps:Proc. Conf. on Welding of Creep Resistant Steels, The Welding Institute, Cambridge, United Kingdom, 1970, p. 79.

    Google Scholar 

  7. C.D. Lundin, S.C. Kelly, R. Menon, and B.J. Kruse:Stress Rupture Behaviour of Post Weld Heat Treated 2.25Cr-1Mo Steel Weld Metal, Welding Research Council Bulletin No. 315, 1984, pp. 1–66.

  8. R.K. Singh Raman and J.B. Gnanamoorthy:J. Mater. Sci., 1992, vol. 27, p. 3435.

    Article  CAS  Google Scholar 

  9. R.K. Singh Raman, A.S. Khanna, and J.B. Gnanamoorthy:Proc. 1st. Int. Conf. on Microscopy of Oxidation, M.J. Bennet and G.W. Lorimer, eds., Cambridge, United Kingdom, 1990, pp. 54–64.

  10. R.K. Singh Raman, J.B. Gnanamoorthy, and S.K. Roy:Oxid. Met., 1993, vol. 40, p. 1.

    Article  Google Scholar 

  11. R.L. Klueh and J.F. King:Welding J., Res. Suppl., 1982, vol. 61, p. 302s.

    Google Scholar 

  12. ASME Boiler and Pressure Vessel Code, Code Case N-47, 1986.

  13. W. Arnswald, R. Blum, B. Neubauer, and K.E. Poulson:Proc. Int. Conf. Creep, Tokyo, Japan, April 1986, pp. 367–72.

  14. P. Hancock:Vacancies ’76, R.E. Smallman and J.E. Harris, eds., The Metals Society, London, 1977, p. 215.

    Google Scholar 

  15. R.L. Hecht and J.R. Weertman:Metall. Trans. A, 1993, vol. 24A, pp. 327–33.

    CAS  Google Scholar 

  16. J. Pilling and N. Ridley:Metall. Trans. A, 1982, vol. 13A, pp. 557–63.

    Google Scholar 

  17. N. Gope, A. Chattergee, T. Mukherjee, and D.S. Sharma:Metall. Trans. A, 1993, vol. 24A, pp. 315–26.

    CAS  Google Scholar 

  18. R.G. Baker and J. Nutting:J. Iron Steel Inst., 1959, vol. 192, p. 275.

    Google Scholar 

  19. P.J. Alberry and W.K.C. Jones:Met. Technol., 1977, vol.4, p. 360.

    Google Scholar 

  20. E.F. Nippes:Welding J., Res. Suppl., 1959, vol. 38, p. Is.

    Google Scholar 

  21. CD. Lundin: inAdvances in Welding Science and Technology, Conf. Proceedings, S.A. David, ed., ASM INTERNATIONAL, Metals Park, OH, 1988.

    Google Scholar 

  22. O.V. Serrano, G.R. Edwards, and R.H. Frost: ASTM STP 775, 1982, p. 275.

  23. R.L. Klueh:J. Nucl. Mater., 1974, vol. 54, p. 55.

    Article  CAS  Google Scholar 

  24. C.A. Hippsley:Met. Sci., 1981, vol. 10, p. 137.

    Google Scholar 

  25. J.H. Woodhead and A.G. Quarrel:J. Iron Steel Inst., 1965, vol. 203, p. 605.

    CAS  Google Scholar 

  26. M. Murphy and G. Branch:J. Iron Steel Inst., 1971, vol. 209, p. 546.

    CAS  Google Scholar 

  27. T. Wada and G.T. Eldis: ASTM STP 755, 1982, p. 343.

  28. J. Leitnaker, R.L. Klueh, and W.R. Laing:Metall. Trans. A, 1975, vol. 6A, pp. 1949–55.

    CAS  Google Scholar 

  29. J. Orr, F.R. Beckitt, and G.D. Fawkes:Proc. BNES Int. Conf. on Ferritic Steels for Fast Reactor Steam Generators, London, 1978, S.F. Pugh and E.A. Little, eds., p. 91.

  30. R.K. Singh Raman, A.S. Khanna, B.K. Choudhary, and J.B. Gnanamoorthy:Mater. Sci. Eng. A, 1991, vol. 148, p. 299.

    Article  Google Scholar 

  31. Y. Shida, N. Ohtsuka, J. Murayama, N. Fujino, and H. Fujikawa:Proc. JIMIS-3: High Temperature Corrosion, Trans. Jpn. Inst. Met., 1983, vol. 63.

  32. S. Leistikow, I. Wolf, and H.J. Grabke:Werkst. Korros., 1987, vol. 38, p. 556.

    Article  CAS  Google Scholar 

  33. D.L. Douglass:Oxid. Met., 1969, vol. 1, p. 127.

    Article  CAS  Google Scholar 

  34. B. Borie, C.J. Sparks, and J.V. Cathcart:Acta Metall., 1962, vol. 10, p. 691.

    Article  CAS  Google Scholar 

  35. R.K. Singh Raman, A.S. Khanna, R.K. Tiwari, and J.B. Gnanamoorthy:Oxid. Met., 1992, vol. 37, p. 1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkan, India

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raman, R.K.S. Influence of microstructural variations in the weldment on the high-temperature corrosion of 2.25Cr-1Mo steel. Metall Mater Trans A 26, 1847–1858 (1995). https://doi.org/10.1007/BF02670772

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670772

Keywords

Navigation