Skip to main content
Log in

Mass transport at interfaces in single component systems

  • The 1994 Institute of Metals Lecture
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Mass transport at interfaces is induced by a gradient of chemical potential along the interface; typically, at surfaces, this is caused by a gradient in curvature and, at grain boundaries, by a gradient of normal stress. In addition, interface mass transport in metallic conductors is induced by strong electric fields/currents. On a sufficiently small scale, depending on the temperature, this interface transport dominates bulk diffusion. Continuum equations that specify the interface fluxes in terms of the preceding driving forces and continuity equations that describe the consequences of a divergence of these fluxes are presented; the chemical potential whose gradient is used as a driving force is that in local equilibrium with an element of interface. The equations are subject to boundary conditions at interface junctions that require the total emerging flux to vanish and that require, at junctions that pass flux freely, the chemical potential to be continuous. With the use of several approximations, solutions of the equations are given to describe, in a unified way, basic models of surface morphological evolution, Coble creep and diffusion-based models of sintering, and electromigration. Some of the approximations, not necessarily made simultaneously, are (1) isotropy of interface properties, both within the interface and with regard to the interface orientation; (2) surface slopes everywhere small compared to a reference plane; and (3) steady-state stress in grain boundaries. Limitations and possible extensions of the framework are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Herring:Appl. Phys., 1950, vol. 21, p. 301.

    Article  CAS  Google Scholar 

  2. W.W. Mullins: inMetal Surfaces: Structure, Energetics and Kinetics, ASM, Metals Park, OH, 1963, p. 17.

    Google Scholar 

  3. F.M. d’Heurle:Int. Mater. Rev., 1989, vol. 34, p. 53.

    CAS  Google Scholar 

  4. R.W. Siegel:Mater. Sci. Eng. A, 1993, vol. 168 (2) pp. 189–97.

    Article  Google Scholar 

  5. E.D. Williams:Surf. Sci., 1994, vol. 299–300, pp. 502–24.

    Article  Google Scholar 

  6. G. Ehrlich:Surf Sci., 1994, vol. 299–300, pp. 628–42.

    Article  Google Scholar 

  7. W. Selke and P.M. Duxbury:Z. Phys., 1994, vol. B94, p. 215.

    Google Scholar 

  8. P.C. Searson, R. Li, and K. Sieradzki:Phys. Rev. Lett., 1995, Feb.

  9. C. Herring:Physics of Powder Metallurgy, W.E. Kingston, ed., McGraw-Hill, New York, NY, 1951, p. 143.

    Google Scholar 

  10. J.W. Cahn and J.E. Taylor:Acta Metall Mater., 1994, vol. 42, p. 1045.

    Article  CAS  Google Scholar 

  11. J. Pan and A.C.F. Cocks:Acta Metall., 1994, vol. 42, pp. 1223–30.

    Article  CAS  Google Scholar 

  12. R.J. Asaro and W.A. Tiller:Metall Trans., 1972, vol. 3, pp. 1789–96.

    CAS  Google Scholar 

  13. M.A. Grinfeld:Dokl. Akad. Nauk SSSR, 1986, vol. 290, p. 1358, Sov. Phys. Dokl., 1986, vol. 31, p. 831.

    Google Scholar 

  14. D.J. Srolovitz:Acta Metall., 1988, vol. 37, p. 621.

    Google Scholar 

  15. C. Herring: inStructure and Properties of Solid Surfaces, R. Gomer and C.S. Smith, eds., University of Chicago Press, Chicago, IL, 1952, p. 5.

    Google Scholar 

  16. Differential Geometry of Three Dimensions, C.E. Weatherburn, ed., Cambridge University Press, Cambridge, United Kingdom, 1927.

    Google Scholar 

  17. I.A. Blech and C. Herring:Appl. Phys. Lett., 1976, vol. 29, p. 131.

    Article  CAS  Google Scholar 

  18. I.A. Blech and E.S. Meieran:J. Appl Phys., 1969, vol. 40, p. 485.

    Article  CAS  Google Scholar 

  19. I.A. Blech:J. Apply. Phys., 1976, vol. 42, p. 1203.

    Article  Google Scholar 

  20. W.W. Mullins:Phil. Mag., 1961, vol. 6, p. 1313.

    Article  Google Scholar 

  21. C. Herring:Phys. Rev., 1951, vol. 82, p. 87.

    Article  CAS  Google Scholar 

  22. J.C. Heyraud and J.J. Metois:Surf. Sci., 1983, vol. 128, p. 334.

    Article  CAS  Google Scholar 

  23. H.P. Bonzel, E. Preuss, and B. Steffen:Surf. Sci., 1984, vol. 145, pp. 20–23.

    Article  CAS  Google Scholar 

  24. M. Ozdemir and A. Zangwill:Phys. Rev. B, 1990, vol. 42, p. 5013.

    Article  Google Scholar 

  25. M. Ozdemir and A. Zangwill:Phys. Rev. B, 1992, vol. 45, p. 3718.

    Article  Google Scholar 

  26. H. Spohn:J. Phys. I (France), 1993, vol. 3, p. 69.

    Article  CAS  Google Scholar 

  27. W.C. Carter, A.R. Roosen, J.W. Cahn, and J.E. Taylor:Acta Metall. Mater., in press.

  28. H.P. Bonzel, N. Freyer, and E. Preuss:Phys. Rev. Lett., 1986, vol. 57, pp. 1024–27.

    Article  CAS  Google Scholar 

  29. C.C. Umback, M.E. Keeffe, and J.M. Blakely:J. Vac. Sci. Technol. A., 1991, vol. 9 (3), p. 1014.

    Article  Google Scholar 

  30. F.A. Nichols and W.W. Mullins:J. Appl. Phys., 1965, vol. 36, p. 1826.

    Article  Google Scholar 

  31. F.A. Nichols and W.W. Mullins:Trans. AIME. 1965, vol. 233, p. 1840.

    CAS  Google Scholar 

  32. R.F. Sekerka and T.F. Marinas:Proc. Int. Conf. on Solid-State Phase Transformations, TMS-AIME, Warrendale, PA, 1983, pp. 67–84.

    Google Scholar 

  33. B.D. Coleman, R.S. Falk, and M. Moakher:Phys. D, in press.

  34. A. Piquet et Uzan:Structure et Propriétés des Surfaces des Solides, Colloques Internationaux du Centre National de la Recherche Scientifique No. 187, Paris, 1969.

  35. W. Zhang and J.H. Schneibel:Comput. Mater. Sci, 1995, vol. 3, pp. 347–58.

    Article  Google Scholar 

  36. W.W. Mullins:J. Appl. Phys., 1959, vol. 30, p. 77.

    Article  Google Scholar 

  37. W.W. Mullins:J. Appl. Phys., 1957, vol. 28, p. 333.

    Article  CAS  Google Scholar 

  38. N.A. Gjostein: in Metal Surfaces: Structure, Energetics and Kinetics, W.D. Robertson and N.A.Gjostein, eds., ASM, Metals Park, OH, p. 99.

  39. J.M. Blakely: inProg. Mater. Sci., 1963, vol. 10, p. 395.

    Article  CAS  Google Scholar 

  40. N.A. Gjostein: inDiffusion, ASM, Metals Park, OH, 1973, pp. 241–74.

    Google Scholar 

  41. H.P. Bonzel: inSurface Physics of Materials, J.M. Blakely, ed., Academic Press, New York, NY, 1975, vol. 2, p. 279.

    Google Scholar 

  42. Landolt-Börnstein, New Series Group IIIc:Crystals and Solid State Physics, vol. 26,Diffusion in Metals and Alloys, 1990, ch. 13.

  43. W.W. Mullins and P.G. Shewmon:Acta Metall., 1959, vol. 7, p. 163.

    Article  CAS  Google Scholar 

  44. W.W. Mullins:Acta Metall., 1958, vol. 6, p. 414.

    Article  Google Scholar 

  45. V.Y. Aristov, V.Y. Fradkov, and L.S. Shvindlerman:Phys. Met. Metall., 1978, vol. 45 (5), p. 83.

    Google Scholar 

  46. A. Brokman, R. Kris, W.W. Mullins, and A.J. Vilenkin:Scripta Metall., in press.

  47. H.J. Frost, C.V. Thompson, and D.T. Walton:Acta Metall., 1992, vol. 40, p. 779.

    Article  CAS  Google Scholar 

  48. S.A. Hackney and G.C. Ojard:Scripta Metall., 1988, vol. 22, p. 1731.

    Article  Google Scholar 

  49. S.A. Hackney:Scripta Metall., 1988, vol. 22, p. 1273.

    Article  CAS  Google Scholar 

  50. F.Y. Génin, W.W. Mullins, and P. Wynblatt:Acta Metall. Mater., 1992, vol. 40, p. 3239.

    Article  Google Scholar 

  51. D.J. Srolovitz and S.A. Safrin:J. Appl. Phys., 1986, vol. 60, pp. 247–54.

    Article  CAS  Google Scholar 

  52. D.J. Srolovitz and S.A. Safrin:J. Appl. Phys., 1986, vol. 60, pp. 255–60.

    Article  CAS  Google Scholar 

  53. D.A. Smith: private communication.

  54. K.T. Miller, F.F. Lang, and D.B. Marshall:J. Mater. Res., 1990, vol. 5, p. 151.

    CAS  Google Scholar 

  55. R. Brandon and F.J. Bradshaw: Royal Aircraft Establishment Technical Report No. 66095, 1966.

  56. A. Pimpinelli:Surf. Sci., 1993, vol. 295, pp. 143–53.

    Article  CAS  Google Scholar 

  57. N.C. Bartelt, T.L. Einstein, and E.D. Williams:Surf. Sci., 1994, vol. 312, pp. 411–21.

    Article  CAS  Google Scholar 

  58. C. Alfonso, J.M. Bermond, J.C. Heyraud, and J.J. Metois:Surf. Sci., 1992, v. 262, p. 371.

    Article  CAS  Google Scholar 

  59. J.G. Amar and F. Family:Phys. Rev. Lett., 1990, vol. 64, p. 543.

    Article  CAS  Google Scholar 

  60. L. Golubovic and R. Bruinsma:Phys. Rev. Lett., 1991, vol. 66, p. 321.

    Article  CAS  Google Scholar 

  61. J. Villain,J. Phys. I (France), 1991, vol. 1, 19–42.

    Article  Google Scholar 

  62. H. Yan:Phys. Rev. Lett., 1992, v. 68, p. 3048.

    Article  CAS  Google Scholar 

  63. C.N. Luse and A. Zangwill,Phys. Rev. B, 1993, vol. 48 (3), 1970.

    Article  CAS  Google Scholar 

  64. R. Rosenberg and M. Ohring:J. Appl. Phys., 1971, vol. 42, pp. 5671–79.

    Article  CAS  Google Scholar 

  65. F.Y. Génin, W.W. Mullins, and P. Wynblatt:Acta Metall. Mater., 1993, vol. 41, p. 3541.

    Article  Google Scholar 

  66. T.J. Chuang and J.R. Rice:Acta Metall., 1973, vol. 21, p. 1625.

    Article  Google Scholar 

  67. M.D. Thouless:Acta Metall. Mater., 1993, vol. 41, p. 1057.

    Article  CAS  Google Scholar 

  68. L.M. Klinger, E.E. Glickman, V.E. Fradkov, W.W. Mullins, and C.L. Bauer,J. Appl. Phys., in press.

  69. H.J. Vogel and L. Ratke:Acta Metall., 1991, vol. 39, pp. 915–23.

    Article  Google Scholar 

  70. A. Brokman, A.J. Vilenkin, and Marchenko: private communication.

  71. R.L. Coble:J. Appl. Phys., 1963, vol. 34, p. 1679.

    Article  Google Scholar 

  72. D.L. Johnson,J. Appl Phys., 1969, vol. 40, p. 192.

    Article  CAS  Google Scholar 

  73. U. Smith, N. Kristensen, F. Ericson, and J.E. Schweitz:J. Vac. Sci. Technol., 1991, vol. A9, p. 2527.

    Google Scholar 

  74. F.Y. Génin:Acta Metall. Mater., in press.

  75. F.G. Yost:Scripta Metall., 1989, vol. 23, p. 1323.

    Article  CAS  Google Scholar 

  76. J.R. Spingarn and W.D. Nix:Acta Metall., 1978, vol. 26, pp. 1389–98.

    Article  CAS  Google Scholar 

  77. P.M. Hazzledine and J.H. Schneibel:Acta Metall., 1993, vol. 41, pp. 1253–62.

    Article  CAS  Google Scholar 

  78. T.G. Langdon:Mater. Sci. Eng., 1991, vol. A137, p. 1–11.

    CAS  Google Scholar 

  79. W.W. Mullins:Scripta Metall. Mater., 1993, vol. 29, pp. 491–96.

    Article  CAS  Google Scholar 

  80. W. Zhang, J.H. Schneibel, and C. Hsueh:Phil. Mag. A., 1994, vol. 70, pp. 1107–18.

    Article  CAS  Google Scholar 

  81. R.L. Coble:J. Appl. Phys., 1961, vol. 32, p. 787.

    Article  CAS  Google Scholar 

  82. R.L. Eadie, G.C. Weatherly, and K.T. Aust:Acta Metall., 1978, vol. 26, pp. 759–67.

    Article  CAS  Google Scholar 

  83. P. Bross and H.E. Exner:Acta Metall., 1979, vol. 27, pp. 1013–20.

    Article  Google Scholar 

  84. F.B. Swinkels and M.F. Ashby:Acta Metall., 1981, v. 29, pp. 259–81.

    Article  CAS  Google Scholar 

  85. J. Pan and A.C.F. Cocks:Acta Metall., 1994, vol. 42, p. 1215–222.

    Article  CAS  Google Scholar 

  86. J. Svoboda and H. Riedel:Acta Metall. Mater., 1995, vol. 43, pp. 499–506.

    Article  CAS  Google Scholar 

  87. A.C.F. Cocks and N.D. Aparicio:Acta Metall. Mater., 1995, vol. 43, pp. 731–41.

    Article  CAS  Google Scholar 

  88. J. Pan and A.C.F. Cocks,Acta Metall Mater., vol. 43, p. 1395 (1995).

    Article  CAS  Google Scholar 

  89. Z. Li, C.L. Bauer, S. Mahajan, and A.G. Milnes:J. Appl. Phys., 1992, vol. 72.

  90. M. Scherge, C.L. Bauer, and W.W. Mullins:Acta Metall. Mater., in press.

  91. C.L. Bauer and W.W. Mullins:Appl. Phys. Lett., 1992, vol. 61, p. 2987.

    Article  CAS  Google Scholar 

  92. M. Scherge, C.L. Bauer, and W.W. Mullins:Proc. 1994 Spring Materials Research Society Symp., Materials Research Society, Pittsburgh, PA, in press.

  93. L. Klinger, E. Glickman, A. Katsman, and L. Levin:Mat. Sci. Eng., 1994, vol. B23, pp. 15–18.

    CAS  Google Scholar 

  94. P.R. Besser, M.C. Madden, and P.A. Flinn:J. Appl. Phys., 1992, vol. 72, p. 3792.

    Article  CAS  Google Scholar 

  95. W.D. Nix and E. Artz:Metall. Trans. A, 1992, vol. 23A, pp. 2007–13.

    CAS  Google Scholar 

  96. H.S. Carslaw and J.C. Yaeger:Conduction of Heat in Solids, Oxford University Press, Oxford, United Kingdom, 1959.

    Google Scholar 

  97. O. Kraft, J. Sanchez, and E. Artzt:Proc. 1992 Spring Meeting of the Materials Research Society, Materials Research Society, Pittsburgh, PA, 1992, vol. 265, p. 119.

    Google Scholar 

  98. S. Shingubara and Y. Nakasaki:Appl. Phys. Lett., 1991, vol. 58, pp. 42–44.

    Article  CAS  Google Scholar 

  99. O.D. Kellog:Foundations of Potential Theory, Dover Publishing Co., New York, NY, 1953.

    Google Scholar 

  100. unpublished research.

  101. Z. Suo, W. Wang, and M. Yang:Appl. Phys. Lett., 1994, vol. 64 (15), p. 1944.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullins, W.W. Mass transport at interfaces in single component systems. Metall Mater Trans A 26, 1917–1929 (1995). https://doi.org/10.1007/BF02670663

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670663

Keywords

Navigation