Skip to main content
Log in

Myogenesis and histogenesis of skeletal muscle on flexible membranes in vitro

  • Rapid Communications in Cell Biology
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Editor's Statement The paper represents a novel and interesting approach to the co-culture of myotubes with fibroblasts which allows three dimensional development of endomysium, perimysium and epimysium and expression of adult-type muscle proteins. Such organogenic development is not normally seen in vitro. The technique should prove useful in elucidating development aspects of muscle cells and their relationship with connective support.

Summary

Primary muscle cell cultures consisting of single myocytes and fibroblasts are grown on flexible, optically clear biomembranes. Muscle cell growth, fusion and terminal differentiation are normal. A most effective membrane for these cultures is commercially available Saran Wrap. Muscle cultures on Saran will, once differentiated, contract vigorously and will deform the Saran which is pinned to a Sylgard base. At first, the muscle forms a two-dimensional network which ultimately detaches from the Saran membrane allowing an undergrowth of fibroblasts so that these connective tissue cells completely surround groups of muscle fibers. A three-dimensional network is thus formed, held in place through durable adhesions to stainless steel pins. This three-dimensional, highly contractile network is seen to consist of all three connective tissue compartments seenin vivo, the endomysium, perimysium and epimysium. Finally, this muscle shows advanced levels of maturation in that neonatal and adult isoforms of myosin heavy chain are detected together with high levels of myosin fast light chain 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bader, D.; Masaki, T.; Fischman, D. Immunochemical analysis of myosin heavy chain during avian myogenesisin vivo andin vitro. J. Cell Biol. 95:763–770; 1982.

    Article  PubMed  CAS  Google Scholar 

  2. Bandman, E. Continued expression of neonatal myosin heavy chain in adult dystrophic skeletal muscle. Science 227:780–782; 1985.

    Article  PubMed  CAS  Google Scholar 

  3. Bandman, E.; Matsuda, R.; Strohman, R. C. Developmental appearance of myosin heavy and light chain isoformsin vivo andin vitro in chicken skeletal muscle. Dev. Biol. 93:508–518; 1982.

    Article  PubMed  CAS  Google Scholar 

  4. Bayne, E. K.; Anderson, M. J.; Fambrough, D. M. Extracellular matrix organization in developing muscle: correlation with acetylcholine receptor aggregates. J. Cell Biol. 99:1486–1501; 1984.

    Article  PubMed  CAS  Google Scholar 

  5. Brevet, A.; Pinto, E.; Peacock, J., et al. Myosin synthesis increased by electrical stimulation of skeletal muscle cell cultures. Science 193:1152–1154; 1976.

    Article  PubMed  CAS  Google Scholar 

  6. Butler-Browne, G. S.; Bugaisky, L. B.; Cuenod, S., et al. Denervation of newborn rat muscles does not block the appearance of adult fast myosin heavy chain. Nature (Lond.) 229:830–833; 1982.

    Article  Google Scholar 

  7. Cerny, L. C.; Bandman, E. Expression of myosin heavy chain isoforms in regenerating myotubes of innervated and denerevated chicken pectoral muscle. Dev. Biol. 119:350–362; 1986.

    Article  Google Scholar 

  8. Cerny, L. C.; Bandman, E. Contractile activity is required for the expression of neonatal myosin heavy chain in embryonic chick pectoral muscle cultures. J. Cell Biol. 103:2153–2161; 1986a.

    Article  PubMed  CAS  Google Scholar 

  9. Chevallier, A.; Kieny, M.; Mauger, A., et al. Developmental fate of the somitic mesoderm in the chick embryo. In: Ede, D. A., ed. Vert. Limb & Somite Morphogenesis. Cambridge Univ. Press. 1977:421–432

  10. Chiquet, M.; Fambrough, D. Chick myotendinous antigen. I. A. monoclonal antibody as a marker for tendon and muscle morphogenesis. J. Cell Biol. 98:1926–1936; 1984.

    Article  PubMed  CAS  Google Scholar 

  11. Christ, B.; Jacob, H. J.; Jacob, M. Experimental analysis of the origin of the sing musculature in avian embryos. Anat. Embryol. 150:171–186; 1977.

    Article  PubMed  CAS  Google Scholar 

  12. Fischman, D. A. The fine structure of muscle differentiation in monolayer culture. In: Banker, B. Q., et al., ed. Research in muscle development and the muscle spindle. Amsterdam: Excerpta Medica; 1972:88.

    Google Scholar 

  13. Folkman, J.; Moscona, A. Role of cell shape in growth control. Nature 273:345–349; 1978.

    Article  PubMed  CAS  Google Scholar 

  14. Gardner, J. M.; Fambrough, D. M. Fibronectin expression during myogenesis. J. Cell Biol. 96:474–485; 1983.

    Article  PubMed  CAS  Google Scholar 

  15. Guharay, F.; Sachs, F. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J. Physiol. 351:685–701; 1984.

    Google Scholar 

  16. Hoh, J. F. Y.; Yeoh, G. P. S. Rabbit skeletal myosin isozymes from fetal, fast-twitch and slow-twitch muscles. Nature 280:321–323; 1979.

    Article  PubMed  CAS  Google Scholar 

  17. Ishikawa, H. Formation of elaborate networks of T system tubules in cultured skeletal muscle with special reference to T system formation. J. Cell Biol. 38:51–66; 1969.

    Article  Google Scholar 

  18. Laemmli, U. K. Changes of structural proteins during assembly of the head of the bacteriophage T4. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  19. Madri, J. A.; Williams, S. K. Capillary endothelial cell cultures: phenotypic modulation by matrix components. J. Cell Biol. 97:153–165; 1983.

    Article  PubMed  CAS  Google Scholar 

  20. Matsuda, R.; Spector, D. H.; Strohman, R. C. Regenerating adult chicken skeletal muscle and satellite cell cultures express embryonic patterns of myosin and tropomyosin isoforms. Dev. Biol. 100:478–488; 1983.

    Article  PubMed  CAS  Google Scholar 

  21. Matsuda, R.; Spector, D. H.; Strohman, R. C. Denervated skeletal muscle displays discoordinate regulation of the synthesis of several myofibrillar proteins. Proc. Natl. Acad. Sci. USA 81:1122–1125; 1984.

    Article  PubMed  CAS  Google Scholar 

  22. Mauger, A.; Kieny, M.; Hedayat, I., et al. Tissue interactions in the organization and maintenance of the muscle pattern in the chick limb. J. Emb. Exp. Morph. 76:199–215; 1983.

    CAS  Google Scholar 

  23. Montesano, R.; Mouron, P.; Amherdt, M., et al. Collagen matrix promotes reorganization of pancreatic endocrine cell monolayers into islet-like organoids. J. Cell Biol. 97:935–939; 1983.

    Article  PubMed  CAS  Google Scholar 

  24. Moss, P.; Micon-Eastwood, J.; Strohman, R. C. Altered synthesis of myosin light chains is associated with contractility in cultures of differentiating chick embryo breast muscle. Dev. Biol. 114:311–314; 1986.

    Article  PubMed  CAS  Google Scholar 

  25. Moss, P.; Spector, D. H.; Glass, C. A., et al. Streptomycin retards the phenotypic maturation of chick myogenic cells. In Vitro 20:473–478; 1984.

    Article  PubMed  CAS  Google Scholar 

  26. Paterson, B.; Strohman, R. C. Myosin synthesis in cultures of differentiating chicken embryo skeletal muscle. Dev. Biol. 29:113–138; 1972.

    Article  PubMed  CAS  Google Scholar 

  27. Peng, H. B.; Wolosewick, J.; Cheng, P.-C. The development of myofibrils in cultured muscle cells: a whole mount and thin section electron microscope study. Dev. Biol. 88:121–136; 1981.

    Article  PubMed  CAS  Google Scholar 

  28. Pitelka, D. R.; Taggart, B. N. Mechanical tension induces lateral movement of intramembrane components of the tight junction: studies on mouse mammary cells in culture. J. Cell Biol. 96:606–612; 1983.

    Article  PubMed  CAS  Google Scholar 

  29. Quaroni, A. Development of fetal rat intestine in organ and monolayer culture. J. Cell Biol. 100:1611–1622; 1985.

    Article  PubMed  CAS  Google Scholar 

  30. Saad, A. D.; Obinata, T.; Fischman, D. Immunochemical analysis of protein isoforms in thick myofilaments of regenerating skelatal muscle. Dev. Biol. In press.

  31. Sanderson, R. D.; Fitch, J. M.; Linsenmayer, T. R., et al. Fibroblasts promote the formation of a continuous basal lamina during myogenesisin vitro. J. Cell Biol. 102:740–747; 1986.

    Article  PubMed  CAS  Google Scholar 

  32. Shannon, J. M.; Pitelka, D. R. The influence of cell shape on the induction of functional differentiation in mouse mammary cellsin vitro. In Vitro 17:1016–1028; 1981.

    Article  PubMed  CAS  Google Scholar 

  33. Silberstein, L.; Lowey, S. Isolation and distribution of myosin isozymes in chicken pectoralis muscle. J. Mol. Biol. 148:153–189; 1981.

    Article  PubMed  CAS  Google Scholar 

  34. Strohman, R. C.; Bandman, E.; Walker, C. Regulation of myosin accumulation by muscle activity in cell culture. J. Muscle Res. Cell Motil. 2:269–282; 1981.

    Article  PubMed  CAS  Google Scholar 

  35. Vandenburgh, H. H.; Kaufman, S. Stretch-induced growth of skeletal myotubes correlates with activation of the sodium pump. J. Cell Physiol. 109:205–214; 1981.

    Article  PubMed  CAS  Google Scholar 

  36. Vandenburgh, H. H.; Karlisch, P.; Farr, L. Maintenance of highly contractile tissue cultured avian skeletal myotubes in collagen gel. In Vitro 24:166–174; 1988.

    CAS  Google Scholar 

  37. Walls, E. W. The Microanatomy of Muscle. In: Bourne, G. H., ed: Structure and Function of Muscle. Vol. 1 Academic Press; 1960:21–59.

  38. Weinberg, C. B.; Bell, E. A blood vessel model constructed from collagen and cultured vascular cells. Science 231:397–400; 1986.

    Article  PubMed  CAS  Google Scholar 

  39. Whalen, R. G.; Sell, S. M.; Butler, G. S., et al. Three myosin heavy chain isozymes appear sequentially in rat muscle development. Nature 292:805–809; 1981.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Antibody 2E9 to neonatal myosin heavy chain was obtained from Dr. Everett Bandman. MF 20 which reacts with all myosin heavy chain isoforms including the embryonic isoform and MF 14 which reacts specifically with adult myosin heavy chain were obtained from Drs. Bader and Fischman. Antibody to myosin fast light chain 3 was obtained from Dr. Susan Lowey. Antibody to fibronectin was obtained from Dr. Douglas Fambrough.

This work was supported by grants to R. C. S. from the Muscular Dystrophy Association and from NIH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strohman, R.C., Bayne, E., Spector, D. et al. Myogenesis and histogenesis of skeletal muscle on flexible membranes in vitro. In Vitro Cell Dev Biol 26, 201–208 (1990). https://doi.org/10.1007/BF02624113

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02624113

Key words

Navigation