Skip to main content
Log in

Practical identification of functional expansions of nonlinear systems submitted to non-Gaussian inputs

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Time-domain identification of nonlinear systems represented by functional expansions is considered. A general framework is defined for the analysis of three identification methods: the widely used cross-correlation method, Korenberg's method, and a suboptimal least-squares method based on a stochastic approximation algorithm. First, the major characteristics of the underlying estimation problem are pointed out. Then, the identification methods are interpreted as approximations to an optimal estimator, which helps gain insight into their internal functioning and to the investigation of their connections and differences. Examination of results previously published and of the simulations reported in this article indicate that stochastic approximation is an interesting alternative to other existing methods. Identification of a biological system stimulated by a non-Gaussian input confirms the practicality of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert, A.E.; Gardner, L.A. Stochastic approximation and linear regression. Cambridge, MA: MIT Press: 1967.

    Google Scholar 

  2. Amorocho, J.; Brandstetter, A. Determination of nonlinear functional response functions in rainfallrunoff processes. Water Resources Research 7:1087–1108; 1971.

    Article  Google Scholar 

  3. Aracil, J. Measurement of Wiener kernels with binary random signals. IEEE Trans. Automatic Control AC-15:123–125; 1970.

    Article  Google Scholar 

  4. Boyd, S.; Tang, Y.S.; Chua, L.O. Measuring Volterra kernels. IEEE Trans. Circuits & Systems CAS-30:571–577; 1983.

    Article  Google Scholar 

  5. Cameron, R.H.; Martin, W.T. The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals. Annals of Mathematics 48:385–392; 1947.

    Article  Google Scholar 

  6. Domoment, G.; Goussard, Y., Bul-Mong-Hung. Peut-on étendre la notion d'élastance ventriculaire à des contractions non-périodiques? In: Biologie théorique. Paris: Editions CNRS; 1985: pp. 153–164.

    Google Scholar 

  7. Demoment, G.; Hinglais, J. Global parametric search and left ventricular identification: Evaluation of cardiac contractility through computed maximal isovolumic elastance. Annals of Biomedical Engineering 9:59–74; 1981.

    Google Scholar 

  8. Dvoretzky, A.. On stochastic approximation. Proc. 3rd Berkeley Symposium on Mathematical Statistics and Probability 1:39–55; 1956.

    Google Scholar 

  9. Fréchet, M. Sur les fonctionnelles continues. Annales de l'École Normale Supérieure 27:193–219; 1910.

    Google Scholar 

  10. French, A.S.; Butz, E.G. Measuring the Wiener kernels of a nonlinear system using the fast Fourier transform. International Journal of Control 17: 529–539; 1973.

    Google Scholar 

  11. Golub, G.H.; Van Loan, C.F. Matrix computations (2d ed.) Baltimore, MD: The Johns Hopkins University Press; 1989.

    Google Scholar 

  12. Goussard, Y. Identification de systèmes non-linéaires, représentés par développement fonctionnels et soumis à diverses entrées aléatoires, à l'aide d'une méthode d'approximation stochastique. Thèse de Docteur-Ingénieur, Université de Paris-Sud, Centre d'Orsay; 1983.

  13. Goussard, Y.. Wiener kernel estimation: A comparison of cross-correlation and stochastic approximation methods. In: Advanced methods of physiological system modeling, Vol. 1. V.Z. Marmrelis, ed. Los Angeles: USC Biomedical Simulations Resource; 1987: pp. 289–302.

    Google Scholar 

  14. Goussard, Y; Bui-Mong-Hung; Demoment, G. Functional analysis of ventricular mechanics. How to extend the elastance concept to non-periodic contractions. In: Proc. 6th Int. Conf. CSDS. Philadephia, PA; 1984: pp. 308–311.

  15. Goussard, Y.; Krenz, W. C.; Stark, L. An improvement of the Lee and Schetzen cross-correlation method. IEEE Trans. Automatic Control AC-30:895–898; 1985.

    Article  Google Scholar 

  16. Hung, G.H.; Stark, L.: The kernel identification method (1910–1977)—Review of theory, calculation, application and interpretation. Mathematical Biosciences 37: 135–190; 1977.

    Article  Google Scholar 

  17. Korenberg, M. J. Functional expansions, parallel cascades and nonlinear difference equations. In: Advanced methods of physiological system modeling. Vol. 1. V. Z. Marmarelis, ed. Los Angeles: USC Biomedical Simulations Resource; 1987: pp. 221–240.

    Google Scholar 

  18. Korenberg, M. J. Identifying nonlinear difference equation and functional expansion: The fast orthogonal algorithm. Annals of Biomedical Engineering 16: 123–142; 1988.

    Article  PubMed  CAS  Google Scholar 

  19. Korenberg, M.J.; Bruder, S.B.; McIlroy, P.J.. Exact orthogonal kernel estimation from finite data records: Extending Wiener's identification of nonlinear systems. Annals of Biomedical Engineering 16:201–214; 1988.

    Article  PubMed  CAS  Google Scholar 

  20. Korenberg, M.J.; Hunter, I.W.. The identification of nonlinear biological systems: Wiener kernel approaches. Annals of Biomedical Engineering 18:629–654; 1990.

    Article  PubMed  CAS  Google Scholar 

  21. Krausz, H.I. Identification of nonlinear system using random input train inputs. Biological Cybernetics 19:217–230; 1975.

    Article  Google Scholar 

  22. Lee, Y.W.; Schetzen, M.; Measurement of the Wiener kernels of a nonlinear system by cross-correlation. International Journal of Control 2:237–254; 1965.

    Google Scholar 

  23. Ljung, L. Recursive identification methods for off-line identification problems. Proc. 6th Symp. Identification of Systems and Parameter Estimation. pp. 475–480; 1982.

  24. Marmarelis, V.Z. A family of quasi-white noise signals and its optimal use in biological system identification. Part I: Theory. Biological Cybernetics 27:49–56; 1977.

    Article  PubMed  CAS  Google Scholar 

  25. Marmarelis, P.Z.; Marmarelis, V.Z. Analysis of physiological systems. New York: Plenum; 1978.

    Google Scholar 

  26. Palm, G.; Poggio, T. Stochastic identification methods for nonlinear systems: An extension of the Wiener theory. SIAM J. Applied Mathematics 34:524–534; 1978.

    Article  Google Scholar 

  27. Rader, C.M.; Steinhardt, A.O. Hyperbolic Householder transformations. IEEE Trans. Acoustics, Speech & Signal Processing ASSP-34:1589–1602; 1986.

    Article  Google Scholar 

  28. Saridis, G.N. Stochastic approximation methods for identification and control—A survey. IEEE Trans. Automatic Control AC-19:798–809; 1974.

    Article  Google Scholar 

  29. Schetzen, M. A theory of nonlinear system identification. International Journal of Control 20:577–592; 1974.

    Google Scholar 

  30. Schetzen, M. Nonlinear system modeling based on the Wiener theory. Proc. IEEE 69:1557–1573; 1981.

    Google Scholar 

  31. Stankovic, S.S. On asymptotic properties of a real-time identification algorithm based on dynamic stochastic approximation. IEEE Trans. Automatic Control AC-23:58–61; 1978.

    Article  Google Scholar 

  32. Stark, L. Neurological control systems: Studies in bioengineering. New York: Plenum; 1968.

    Google Scholar 

  33. Sunagawa, K.; Sagawa, K. Models of ventricular contraction based on time-varying elastance. CRC Crit. Review of Biomedical Engineering 7:193–228; 1982.

    CAS  Google Scholar 

  34. Usui, S.; Murase, K.; Watanabe, A. An optimization technique for Volterra series expansion in biological system identification. In: Proc. 6th IEEE/EMBS Conf., Los Angeles, CA; 1984: pp. 1–10.

  35. Volterra, V. Theory of functionals. Glasgow: Blackie & Sons; 1930.

    Google Scholar 

  36. Watanabe, A.; Stark, L. Kernel method for nonlinear analysis: Identification of a biological control system. Mathematical Biosciences 27:99–108; 1975

    Article  Google Scholar 

  37. Wiener, N. Nonlinear problems in random theory. New York: Wiley; 1958.

    Google Scholar 

  38. Yasui, S. Stochastic functional Fourier series, Volterra series, and nonlinear systems analysis. IEEE Trans. Automatic Control AC-24:230–242; 1979.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goussard, Y., Krenz, W.C., Stark, L. et al. Practical identification of functional expansions of nonlinear systems submitted to non-Gaussian inputs. Ann Biomed Eng 19, 401–427 (1991). https://doi.org/10.1007/BF02584318

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584318

Keywords

Navigation