Skip to main content
Log in

The stochastic bottleneck linear programming problem

  • Published:
Top Aims and scope Submit manuscript

Abstract

In this paper we consider some stochastic bottleneck linear programming problems. We overview the solution methods in the literature. In the case when the coefficients of the objective functions are simple randomized, the minimum-risk approach will be used for solving these problems. We prove that, under some positivity conditions, these stochastic problems are reduced to certain deterministic bottleneck linear problems. An application of these problems to bottleneck spanning tree problems is given. Two simple numerical examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achary K.K. and C.R. Seshan (1981). A time minimising transportation problem with quantity dependent time.European Journal of Operational Research 7(3), 290–298.

    Article  Google Scholar 

  • Achary K.K., C.R. Seshan and V.G. Tikekar (1982). A generalized bottleneck linear programming problem.Indian J. Technol. 20, 5–9.

    Google Scholar 

  • Ahuja R.K. (1985). Min max linear programming problem.Operations Research Letters 4, 131–134.

    Article  Google Scholar 

  • Akgül, M. (1984). On a minimax problem.Opsearch 21 (1), 30–37.

    Google Scholar 

  • Andersen, K.A., K. Jörnsten and M. Lind (1996). On bicriterion minimal spanning trees: An approximation.Computers and Operations Research 23 (12), 1171–1182.

    Article  Google Scholar 

  • Bansal, S. and M.C. Puri (1980). A min max problem.Z. Operations Research 24 (5), 191–200.

    Article  Google Scholar 

  • Burkard, R.E. and F. Rendl (1991). Lexicographic bottleneck problems.Operations Research Letters 10, 303–308.

    Article  Google Scholar 

  • Chandrasekaran, R. (1977). Minimal ratio spanning trees.Networks 7 (4), 335–342.

    Google Scholar 

  • Cheriton, D. and R.E. Tarjan (1976). Finding minimum spanning trees.SIAM J. Comput. 5(4), 724–742.

    Article  Google Scholar 

  • Emelichev, V.A., M.K. Kravtsov and O. A. Yanushkevich (1995). Conditions for Pareto optimality in a discrete vector problem on a system of subsets (Russian).Zh. Vychisl. Mat. i, Mat. Fiz. 35 (11), 1641–1652.

    Google Scholar 

  • Ford, L.R. and D.R. Fulkerson (1962).Flows in Networks. Princeton University Press, New Jersey.

    Google Scholar 

  • Francis, R.L. and J.A. White (1974).Facility Layout and Location: An Analytical Approach. Prentice Hall (Englewood Cliffs, N.J.

    Google Scholar 

  • Frieze, A.M. (1975). Bottleneck linear programming.Opl. Research Q. 26 (4), 871–874.

    Google Scholar 

  • Gabow, H.N. and R.E. Tarjan (1988). Algorithm for two bottleneck optimization problems.J. Algorithms 9 (3), 411–417.

    Article  Google Scholar 

  • Ganley, J.L. and J.S. Salome (1996). Optimal and approximate bottleneck Steiner trees.Operations Research Letters 19 (5), 217–224.

    Article  Google Scholar 

  • Garfinkel, R.S. (1971). An improved algorithm for the bottleneck assignment problem.Operations Research 19, 1747–1751.

    Google Scholar 

  • Garfinkel, R.S., A.W. Neebe and M.R. Rao (1974). The m-center problem: bottleneck facility location. Working Paper Series No. 7414, Graduate School of Management, University of Rochester, Rochester, New York.

    Google Scholar 

  • Garfinkel, R.S. and G.L. Nemhauser (1970). Optimal political districting by implicit enumeration techniques.Management Science 16B, 495–508.

    Google Scholar 

  • Garfinkel, R.S. and Rao M.R. (1971). The bottleneck transportation problem.Naval Research Logistics Quarterly 18, 465–472.

    Google Scholar 

  • Garfinkel, R.S. and Rao, M.R. (1976). Bottleneck linear programming.Mathematical Programming 11 (3), 291–298.

    Article  Google Scholar 

  • Geetha, S. and K.P.K. Nair (1993). On stochastic spanning tree problem.Networks 23 (8), 675–679.

    Google Scholar 

  • Geetha, S. and M.N. Vartak (1994). The three-dimensional bottleneck assigment problem with capacity constraints.European Journal of Operational Research 73, 562–568.

    Article  Google Scholar 

  • Gross, O. (1959). The bottleneck assignment problem. Paper P-1630, The RAND Corporation, Santa Monica, CA.

    Google Scholar 

  • Gupta, S.K. and A.K. Mittal (1982). A min-max problem as a linear programming problem.Opsearch 19 (1), 49–53.

    Google Scholar 

  • Gupta, S.K. and A.P. Punnen (1993). Minimax linear programmes with grouped variables.Opsearch 26 (3), 177–186.

    Google Scholar 

  • Hochbaum, D.S. and Pathria, A. (1996). The bottleneck graph partition problem.Networks,28 (4), 221–225.

    Article  Google Scholar 

  • Ishii, H. and T. Matsutomi (1995). Confidence regional method of stochastic spanning tree problem.Math. Comput. Modelling 22 (10–12), 77–82.

    Article  Google Scholar 

  • Ishii, H. and T. Nishida (1983). Stochastic bottleneck spanning tree problem.Networks 13, 443–449.

    Google Scholar 

  • Ishii, H., S. Shiode, T. Nishida and Y. Namasuya (1981). Stochastic spanning tree problem.Discrete Applied Mathematics 3, 263–273.

    Article  Google Scholar 

  • Ishii, H., S. Shiode and T. Nishida (1981). Chance constrained spanning tree problem.J. Oper. Res. Soc. Japan 24 (2), 147–158.

    Google Scholar 

  • Kaplan, S. (1974). Applications of programs with maximin objective functions to problems of optimal resource allocation.Operations Research 22 (4), 802–807.

    Google Scholar 

  • Mathur, K., S. Bansal and M.C. Puri (1993). Bicriteria bottleneck linear programming problem.Optimization 28 (2), 165–170.

    Google Scholar 

  • Mathur, K., M. C. Puri and S. Bansal (1995). On ranking of feasible solutions of a bottleneck linear programming problem.Top 3 (2), 265–283.

    Google Scholar 

  • Minoux, M. (1989). Solving combinatorial problems with min-max-min-sum objective and applications.Math. Programming 45 (2), 361–372.

    Article  Google Scholar 

  • Mohd, I. B. (1994). Interval elimination method for stochastic spanning tree problem.Applied Mathematics, and Computation 66 (2–3), 325–341.

    Article  Google Scholar 

  • Pferschy, U. (1995). The random linear bottleneck assignment problem.Integer programming and combinatorial optimization, 145–156. Lecture Notes in Comput. Science, 920, Springer, Berlin.

    Google Scholar 

  • Pferschy, U. (1996). The random linear bottleneck assignment problem.RAIRO Rech. Opér. 30 (2), 127–142.

    Google Scholar 

  • Prékopa, A. (1995).Stochastic Programming. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Sarrafzadeh, M. and C.K. Wong (1992). Bottleneck Steiner trees in the plane.IEEE Transactions on Computers 41 (3), 370–374.

    Article  Google Scholar 

  • Seshan, C.R. and K.K. Achary (1982). On the bottleneck linear programming problem.European. J. Oper. Res. 9, 347–352.

    Article  Google Scholar 

  • Stancu-Minasian, I.M. (1984).Stochastic Programming with Multiple Objective Functions. Ed. Academiei, Bucureşti, România D. Reidel Publishing Company, Dordrecht, Boston, Lancaster.

    Google Scholar 

  • Stancu-Minasian, I.M. (1997).Fractional Programming: Theory, Methods and Applications. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Stancu-Minasian, I.M. and St. Tigan (1985). The minimum-risk approach to the bottleneck transportation problem. Itinerant Seminar on Functional Equations Approximation and Convexity (Cluj-Napoca, 1985), 203–208. Preprint 85-6, Univ. “Babeş-Bolyai”, Cluj-Napoca.

    Google Scholar 

  • Stancu-Minasian, I.M. and St. Tigan (1990). On some fractional programming models ocurring in minimum-risk problems. In: Generalized Convexity and Fractional Programming with Economic Applications. A. Cambini, E. Castagnoli, L. Martein, P. Mazzoleni and S. Schaible (eds.),Proceedings of the International Workshop on “Generalized Concavity, Fractional Programming and Economic Applications”, held at the University of Pisa, Italy, May 30–June 1, 1988. Lecture Notes in Economics and Mathematical Systems,345, Springer-Verlag, 295–324.

  • Tigan, St. and Stancu-Minasian, I.M. (1983). Criteriul riscului minim pentru problema Cebîşev.Lucrârile celui de-al IV-lea Simpozion “Modelarea ciberneticâ a proceselor de producţie” 26–28 mai 1983. ASE-Bucureşti, Vol.I, 338–342.

    Google Scholar 

  • Tigan, St. and I.M. Stancu-Minasian (1985). The stochastic bottleneck transportation problem.Anal. Numér. Théor. Approximation 14 (2), 153–158.

    Google Scholar 

  • Yang, Y.L. and S.W. Shen (1988). A generalization of a bottleneck problem (Chinese).J. Numer. Methods Comput. Appl. 9 (4), 214–218.

    Google Scholar 

  • Yao, A.C. (1975). An O(\E\ log log\V\) algorithm for finding minimum spanning trees.Information Processing Letters 4, 21–23.

    Article  Google Scholar 

  • Yechiali, U. (1968). A stochastic bottleneck assignment problem.Management Sci. 14 (11), 732–734.

    Article  Google Scholar 

  • Yechiali, U. (1971). A note on a stochastic production-maximizing transportation problem.Naval Research Logist. Quart. 18 (3), 429–431.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper was written when I.M. Stancu-Minasian was visiting the Instituto Complutense de Análisis Económico, in the Universidad Complutensen de Madrid, from October 1, 1997 to November 15, 1997 and from October 24, 1998 to November, 9, 1998, as invited researcher. He is grateful to the Institution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stancu-Minasian, I.M., Caballero, R., Cerdá, E. et al. The stochastic bottleneck linear programming problem. Top 7, 123–143 (1999). https://doi.org/10.1007/BF02564715

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02564715

Key words

AMS subject classification

Navigation