Skip to main content
Log in

The effect of gallium on seeded hydroxyapatite growth

Calcified Tissue International Aims and scope Submit manuscript

Summary

Gallium chloride in solution at concentrations of 10–100 μM inhibits the seeded growth of hydroxyapatite from metastable calcium phosphate solutions. Using initial rate data, an effective rate constant for the process of crystal growth can be derived; this rate constant varies with gallium concentration in a log-dose/response fashion. The disappearance of gallium occurs disproportionately fast in the early stages of the experiments. This suggests that gallium acts by adsorbing to the crystal surface where it inhibits crystal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Warrell RP, Selkos A, Alcock NW, Bockman RS (1986) Gallium nitrate for acute treatment of hypercalcemia: clinicopharmacological and dose-response analysis. J Cancer Res 46:4208–4212

    Google Scholar 

  2. Warrell RP, Alcock NW, Bockman RS (1987) Gallium nitrate inhibits accelerated bone turnover in patients with bone metastases. J Clin Oncol 5:292–298

    PubMed  Google Scholar 

  3. Bockman RS, Boskey AL, Blumenthal NC, Alcock NW, Warrell RP (1987) Gallium increases bone calcium and crystalline perfection of hydroxyapatite. Calcif Tissue Int 39:376–381

    Google Scholar 

  4. Christoffersen J, Christoffersen MR, Larsen R, Rostrup E, Tingsgaard P, Andersen O, Grandjen P (1988) Interaction of cadmium ions with calcium hydroxyapatite crystals—a possible mechanism contributing to the pathogenesis of cadmium-induced bone disease. Calcif Tissue Int 42:331–340

    PubMed  CAS  Google Scholar 

  5. Hodsman AB, Sheirard DJ, Alfrey AC, Ott S, Brickman AS, Miller NL, Maloney NA, Coburn JW (1982) Bone aluminum and histomorphometric features of renal osteodystrophy. J Clin Endocrinol Metab 54:539–546

    Article  PubMed  CAS  Google Scholar 

  6. Blumenthal NC, Posner AS (1984) In vitro model of aluminum-induced osteomalacia: inhibition of hydroxyapatite formation and growth. Calcif Tissue Int 36:439–441

    Article  PubMed  CAS  Google Scholar 

  7. Chen CC, Boskey AL, Rosenberg LC (1984) The inhibitory effects of cartilage proteoglycans on hydroxyapatite growth. Calcif Tissue Int 36:285–290

    Article  PubMed  CAS  Google Scholar 

  8. Posner AS, Betts F, Blumenthal NC (1979) Bone mineral composition and structure. In: Simmons D, Kunin A (eds) Skeletal research. Academic Press, New York, pp 167–192

    Google Scholar 

  9. Willis JB (1960) The determination of metals in blood serum by atomic absorption spectroscopy. Calcium Spectrochim Acta 16:259–272

    Article  CAS  Google Scholar 

  10. Heinonen JK, Lahti RJ (1981) A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal Biochem 113:313–317

    Article  PubMed  CAS  Google Scholar 

  11. Kelsen DP, Alcock NW, Yeh S, Brown J, Young CW (1980) Pharmacokinetics of gallium nitrate in man. Cancer 46:2009–2013

    Article  PubMed  CAS  Google Scholar 

  12. Boskey AL, Posner AS (1976) Formation of hydroxyapatite at low supersaturation. J Phys Chem 80:40–45

    Article  CAS  Google Scholar 

  13. Mundy GR (1985) Pathogenesis of hypercalcemia of malignancy. Clin Endocrinol 23:705–717

    CAS  Google Scholar 

  14. Bockman RS, Repo MA, Warrell RP, Israel R, Gabrilove J (1987) Gallium nitrate inhibits bone resorption induced by recombinant human tumor necrosis factor. Proc Am Assoc Cancer Res 28:449

    Google Scholar 

  15. Christoffersen MR, Christoffersen J (1985) The effect of aluminum on the rate of dissolution of calcium hydroxyapatite: a contribution to the understanding of aluminum-induced disease. Calcif Tissue Int 37:673–676

    PubMed  CAS  Google Scholar 

  16. Repo MA, Bockman RS, Betts F, Boskey AL, Alcock NW, Warrell RP (1988) Effect of gallium on bone mineral properties. Calcif Tissue Int 43:300–306

    Article  PubMed  CAS  Google Scholar 

  17. Posner AS, Betts F (1981) Molecular control of tissue mineralization. In: Veis A (ed) The chemistry and biology of mineralized connective tissues. Elsevier North Holland Inc, New York, pp 257–266

    Google Scholar 

  18. Meyer JL, Thomas WC (1982) Trace metal-critic acid complexes as inhibitors of calcification and crystal growth. J Urol 128:1372–1375

    PubMed  CAS  Google Scholar 

  19. Fleisch H, Bonjour JP, Morgan DB, Reynolds JJ, Schenk R, Smith R, Russell RGG (1972) Diphosphonates. In: Taylor S (ed) Endocrinology 1971. W. Heinemann Medical Books, London, pp 430–443

    Google Scholar 

  20. Christoffersen J, Christoffersen MR (1981) Kinetics of dissolution of calcium hydroxyapatite. IV. The effect of some biologically important inhibitors. J Crystal Growth 53:42

    Article  CAS  Google Scholar 

  21. Jung A, Bisaz S, Fleisch H (1973) The binding of pyrophosphate and two diphosphonates on hydroxyapatite crystals. Calcif Tissue Int 11:269–280

    Article  CAS  Google Scholar 

  22. Garside J (1982) Nucleation. In: Nancollas GH (ed) Biological mineralization and demineralization. Springer Verlag, New York, pp 23–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donnelly, R., Boskey, A. The effect of gallium on seeded hydroxyapatite growth. Calcif Tissue Int 44, 138–142 (1989). https://doi.org/10.1007/BF02556473

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556473

Key words

Navigation