Skip to main content
Log in

The dehydration of copper(II) acetate monohydrate

  • Solid State Decompositions
  • Published:
Journal of Thermal Analysis Aims and scope Submit manuscript

Abstract

The thermal dehydration of copper(II) acetate hydrate has been studied between 353 and 406 K, over a range of humidities. The dehydration is controlled by nucleation-and-growth kinetics at low temperatures, with an activation energy of 154 kJ·mol−1, which changes to contracting-disc kinetics at higher temperatures with a lower activation energy of 76 kJ·mol−1. Frequency factors have also been derived; the value for the high temperature process is low (107s−1) and that for the low temperature step is high (1017s−1). Optical microscopy has been used to clarify the bulk kinetics; there is evidence for a reactive layer at the surface of the decomposing solid.

Zusammenfassung

Im Intervall 353–406 K und bei verschiedener Feuchte wurde die thermische Dehydration von Kupfer(II)-acetate-Hydrat untersucht. Bei niedrigen Temperaturen wird die Dehydratation durch eine Kernbildungs- und Kernwachstumskinetik mit einer Aktivierungsenergie von 154 kJ/mol kontrolliert, was bei höheren Temperaturen in eine Kinetik kontraktierender Scheiben mit einer niedrigeren Aktivierungsenergie von 76 kJ/mol übergeht. Die Frequenzfaktoren wurden ebenfalls ermittelt; der Wert für den Prozeß bei höherer Temperatur ist niedrig (107s−1) und der für den Schritt bei niedrigerer Temperatur groß (1017 s−1). Zur Klärung der Volumen-Kinetik wurde optische Mikroskopie angewendet; es gibt Beweise für eine reaktive Schicht an der Oberfläche des sich zersetzenden Feststoffes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Goffer, Archeological Chemistry, Wiley, 1980, p. 260.

  2. A. F. Wells, Structural Inorganic Chemistry, 3rd Edition, O.U.P., 1962, p. 392.

  3. H. R. Oswald and W. Feitnecht, Helv. Chim. Acta,44 (1961) 272. W. Feitnecht, ‘Essays in Coordination Chemistry’, Ed. W. Schneider, G. Andereeg and R. Gut, Birkhauser Verlag, Basel, 1964, p. 84.

    Google Scholar 

  4. R. Walker, J. Chem. Ed., 57 (1980) 277.

    Article  CAS  Google Scholar 

  5. N. Koga and H. Tanaka, Solid State Ionics,44 (1990) 1.

    Article  CAS  Google Scholar 

  6. H. Tanaka and N. Koga, Thermochim. Acta,173 (1990) 53.

    Article  CAS  Google Scholar 

  7. J. F. Young, J. Appl. Chem.,17 (1967) 24.

    Google Scholar 

  8. J. H. Sharp, G. W. Brindley and B. N. N. Achar, J. Amer. Ceram. Soc.49 (1966) 379.

    Article  CAS  Google Scholar 

  9. H. F. Cordes, J. Phys. Chem.,72 (1968) 2185.

    Article  CAS  Google Scholar 

  10. A. K. Galwey, Adv. Cat.,26 (1977) 247.

    Article  CAS  Google Scholar 

  11. A. K. Galwey and M. E. Brown, J. Catal., 60 (1979) 335.

    Article  CAS  Google Scholar 

  12. M. C. Ball and M. J. Casson, J. Thermal Anal.,28 (1983) 371.

    Article  CAS  Google Scholar 

  13. W. E. Garner (Ed.), Chemistry of the Solid State, Butterworth, London, 1955, Ch. 8.

    Google Scholar 

  14. A. K. Galwey, R. Spinicci and G. G. T. Guarini, Proc. Roy. Soc. London, A378 (1981) 477.

    Article  CAS  Google Scholar 

  15. J. Walker, Scientific American255 (1986) 178.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

In celebration of the 60th birthday of Dr Andrew K. Galwey

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ball, M.C., Portwood, L. The dehydration of copper(II) acetate monohydrate. Journal of Thermal Analysis 41, 347–356 (1994). https://doi.org/10.1007/BF02549320

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02549320

Keywords

Navigation