Skip to main content
Log in

The effect ofpH on thermal stability of globular proteins

A critical insight

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

In this study we try to re-analyze thepH dependence of thermal stability of small globular proteins. From the thermodynamic point of view a long series of calorimetric and spectroscopic investigations has shown that the decreased stability in very acidic conditions can be ascribed to entropic effects. The same conclusion is reached, from a microscopic point of view, by assuming that a binding of protons on equal and noninteracting sites takes place as a consequence of unfolding process. By linking the conformational unfolding equilibrium to the proton binding equilibrium, a model is developed that is able to describe the dependence on thepH of the thermal denaturation processes of small globular protiens. The application of the model to hen lysozyme and T4 lysozyme correctly accounts for the experimental results.

Zusammenfassung

Vorliegend versuchen wir eine Reanalyse der thermischen Stabilität von kleinen Globularproteinen. Unter thermodynamischen Aspekten zeigte eine lange Reihe von kalorimetrischen und spektroskopischen Untersuchungen, daß die verminderte Stabilität in sehr saurem Milieu Entropie-Effekten zugeschrieben werden kann. Zu der gleichen Schlußfolgerung gelangt man unter mikroskopischen Gesichtspunkten unter der Annahme, daß an entsprechenden Stellen, die keine Wechselwirkung eingehen, infolge eines Entfaltungsprozesses die Binding von Protonen stattfindet. Durch Verbindung des Konformations-Entfaltungsgleichgewichtes mit dem Protonenbindungsgleichgewicht wurde ein Modell entwickelt, welches sich zur Beschreibung derpH-Abhängigkeit des thermischen Denaturationsprozesses von kleinen Globularproteinen eignet. Die Anwendung des Modelles an Hühner-Lysozym und T4 Lysozym erklärt korrekt die experimentellen Ergebnisse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. F. Brandts, ‘Structure and Stability of Biological Macromolecules’, Chap. 3, S. N. Timasheff and G. D. Fasman Eds., M. Dekker Inc., New York 1969, p. 213–290.

    Google Scholar 

  2. P. L. Privalov and N. N. Khechinashvili, J. Mol. Biol., 86 (1974) 665.

    Article  CAS  Google Scholar 

  3. W. J. Becktel and J. A. Schellman, Biopolymers, 26 (1987) 1859.

    Article  CAS  Google Scholar 

  4. C. N. Pace, D. V. Laurents and J. A. Thompson, Biochemistry, 29 (1990) 2564.

    Article  CAS  Google Scholar 

  5. G. Barone, P. Del Vecchio, D. Fessas, C. Giancola, G. Graziano, P. Pucci, A. Riccio and M. Ruoppolo, J. Thermal Anal, 38 (1992) 2791.

    Article  CAS  Google Scholar 

  6. K. U. Linderstrom-Lang, C. R. Trav. Lab. Carlsberg, 15 (1924) 73.

    Google Scholar 

  7. D. Stigler and K. A. Dill, Biochemistry, 29 (1990) 1262.

    Article  Google Scholar 

  8. D. E. Anderson, W. J. Becktel and F. W. Dahlquist, Biochemistry, 29 (1990) 2403.

    Article  CAS  Google Scholar 

  9. P. L. Privalov, Adv. Protein Chem., 33 (1979) 167; see also the literature quoted therein.

    CAS  Google Scholar 

  10. G. Graziano, Sc. D. Thesis University ‘Federico II’ of Naples (1993).

  11. J. Jr. Hermans and H. A. Scheraga, J. Am. Chem. Soc., 83 (1961) 3283.

    Article  Google Scholar 

  12. J. A. Schellman, Biopolymers 14 (1975) 999.

    Article  CAS  Google Scholar 

  13. D. Stigter and K. A. Dill, J. Phys. Chem., 93 (1989) 6737.

    Article  CAS  Google Scholar 

  14. K. A. Dill, Biochemistry, 29 (1990) 7133.

    Article  CAS  Google Scholar 

  15. D. O. V. Alonso, K. A. Dill and D. Stigter, Biopolymers, 31 (1992) 16321.

    Google Scholar 

  16. C. H. Robert, A. Colosimo and S. J. Gill, Biopolymers, 28 (1989) 1705.

    Article  CAS  Google Scholar 

  17. M. Straume and F. Freire, Anal. Biochem., 203 (1992) 259.

    Article  CAS  Google Scholar 

  18. G. Barone, P. Del Vecchio, D. Fessas, C. Giancola, G. Graziano and A. Riccio, J. Thermal Anal., 41 (1994) 1263.

    CAS  Google Scholar 

  19. N. N. Khechinashvili, P. L. Privalov and E I. Tiktopulo, FEBS Lett., 30 (1973) 57.

    Article  CAS  Google Scholar 

  20. W. Pfeil and P. L. Privalov, Biophys. Chem., 4 (1976) 23.

    Article  CAS  Google Scholar 

  21. J. M. Sturtevant, Proc. Natl. Acad. Sci. U.S.A., 74 (1977) 2236.

    Article  CAS  Google Scholar 

  22. R. Hawkes, M. G. Gutter and J. A. Schellman, J. Mol. Biol., 175 (1984) 195.

    Article  CAS  Google Scholar 

  23. W. J. Becktel and W. A. Baase, Biopolymers 26 (1987) 619.

    Article  CAS  Google Scholar 

  24. B. L. Chen and J. A. Schellman, Biochemistry, 28 (1989) 685.

    Article  CAS  Google Scholar 

  25. P. L. Privalov, O. B. Ptitsyn and T. M. Birshtein, Biopolymers, 8 (1969) 559.

    Article  CAS  Google Scholar 

  26. G. Barone, P. Del Vecchio, D. Fessas, C. Giancola and G. Graziano, J. Thermal. Anal., 38 (1992) 2779.

    Article  CAS  Google Scholar 

  27. P. L. Privalov and S. J. Gill, Adv. Protein Chem., 39 (1988) 191.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barone, G., Catanzano, F., Del Vecchio, P. et al. The effect ofpH on thermal stability of globular proteins. Journal of Thermal Analysis 42, 383–395 (1994). https://doi.org/10.1007/BF02548523

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02548523

Keywords

Navigation