Skip to main content
Log in

Signal transduction mechanism responsible for changes in axoplasmic transport caused by neurotransmitters

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Transduction mechanism for modulation of axoplasmic transport by neurotransmitters was studied using cultured mouse superior cervical ganglion cells. The transported particles were analyzed with a computer-assisted video-enhanced differential interference contrast microscope system. Acetylcholine depressed and adrenaline increased axoplasmic transport. GTP-binding proteins linked with both receptors activate or inactivate adenylyl cyclase, thereby altering the intracellular concentration of cyclic AMP. The cyclic AMP activates protein kinase A, which phosphorylates certain enzymes and the enzymes in turn phosphorylate motor proteins. An inhibitor of protein kinase A, KT5720, decreases the number of the transported particles. In a stable state the cyclic AMP level stays at a normal level. Treatment with neurotransmitters causes a change in this level, which changes the activity of protein kinase A and thus decreases or enhances the phosphorylation of motor proteins. These changes are involved in the modulation of axoplasmic transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ochs, S. 1982. Axoplasmic transport and its relation to other nerve functions, John Wiley & Sons.

  2. Kuba, K., and Kumamoto, E. 1986. Long-term potentiation of transmitter release induced by adrenaline in bull-frog sympathetic ganglia. J. Physiol. 374:515–530.

    PubMed  CAS  Google Scholar 

  3. Kumamoto, E., and Kuba, K. 1986. Mechanism of long-term potentiation of transmitter release induced by adrenaline in bullfrog sympathetic ganglia. J. Gen. Physiol. 87:775–793.

    Article  PubMed  CAS  Google Scholar 

  4. Takenaka, T., Kawakami, K., Hikawa, N., Bandou, Y., and Gotoh, H., 1992. Effect of neurotransmitters on axoplasmic transport: acetylcholine effect on superior cervical ganglion cells. Brain Res. 588:212–216.

    Article  PubMed  CAS  Google Scholar 

  5. Takenaka, T., Kawakami, T., Hori, H., and Yoko Bandou. 1994. Effect of neurotransmitters on axoplasmic transport: how adrenaline affects superior cervical ganglion cells. Brain Res. 643:81–85.

    Article  PubMed  CAS  Google Scholar 

  6. Takenaka, T., Kawakami, T., Bandou, Y., Hikawa, N., and Gotoh, H., 1993. How neurotransmitters affect axoplasmic transport. Jap. J. Physiol. 43: Suppl. 1, 205–207.

    Google Scholar 

  7. Kawakami, T., Takenaka, T., Hori, H., and Hashimoto, Y. 1995. Effects of acetylcholine and adrenaline on axoplasmic transport at different regions of mouse superior cervical ganglion cells in culture. Brain Res. 683:88–92.

    Article  PubMed  CAS  Google Scholar 

  8. Takenaka, T., Kawakami, K., Hikawa, N., and Gotoh, H. 1990. Axoplasmic transport of mitochondria in cultured dorsal root ganglion cells. Brain Res. 528:285–290.

    Article  PubMed  CAS  Google Scholar 

  9. Allen, R. D., Allen, N. S., and Travis, J. L. 1981. Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris. Cell Motil. 1:291–302.

    Article  PubMed  CAS  Google Scholar 

  10. Bonner, T. A. 1989. The molecular basis of muscarinic receptor diversity. TINS. 12:148–151.

    PubMed  CAS  Google Scholar 

  11. Fukuda, K., Higashida, H., Kubo, T., Maeda, A., Akiba, I., Bujo, H., Mishina, M., and Numa, S. 1988. Selective coupling with K+currents of muscarinic acetylcholine receptor subtypes in NG108-15 cells. Nature. 335:355–357.

    Article  PubMed  CAS  Google Scholar 

  12. Peralta, E. G., Ashkenazi, A., Winslow, J. W., Ramachandran, J., and Capon, D. J. 1988. Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature. 334:434–437.

    Article  PubMed  CAS  Google Scholar 

  13. Baumgold, J., Fishman, P. H. 1988. Muscarinic receptor-mediated increase in cAMP levels in SK-N-SH human neuroblastoma cells. Biochem. Biophys. Res. Commun. 154:1137–1143.

    Article  PubMed  CAS  Google Scholar 

  14. Bujo, H., Nakai, J., Kubo, T., Fukuda, K., Akiba, I., Maeda, A., Mishina, M., and Numa, S. 1988. Different sensitivities to agonist of muscarinic acetylcholine receptor subtypes. FEBS Lett. 240: 95–100.

    Article  PubMed  CAS  Google Scholar 

  15. Sato-Yoshitake, R., Yorifuji, H., Inagaki, M., and Hirokawa, N. 1992. The phosphorylation of kinesin regulates its binding to synaptic vesicles. J. Biol. Chem. 267:23930–23936.

    PubMed  CAS  Google Scholar 

  16. Okada, Y., Sato-Yoshitake, R., and Hirokawa, N. 1995. The activation of protein kinase A pathway selectively inhibits anterograde axonal transport of vesicles but not mitochondria transport or retrograde transport in vivo. J. Neurosci. 15:3053–3064.

    PubMed  CAS  Google Scholar 

  17. Azderian, E., Lin, C. H., Hefner, D., Forsher, P., and Kaczmarek, L. K. 1991. Cyclic AMP increases the quantity of ELH-containing proteins in the neurites of Aplysia bag cell neurons, 21st Ann. Meet. Soc. for Neurosci., Abstr., 59.

  18. Forscher, P., Kaczmarek, Buchanan, J. Ann, and Smith, S. J. 1987. Cyclic AMP induces changes in distribution and transport of organelles within growth cones of Aplysia bag cells neurons. J. Neurosci. 7:3600–3611.

    PubMed  CAS  Google Scholar 

  19. Takenaka, T., Kawakami, T., Hikawa, N., Gotoh, H., and Bandou, Y., 1991. Neurotransmitter regulation of axoplasmic transport and neuronal growth. Biomedic. Res. Supl. 2:171–172.

    Google Scholar 

  20. Sakaguchi, H., and Saito, N. 1989. The acetylcholine and catecholamine contents in song control nuclei of zebra finch during song ontogeny. Devel. Brain Research 47:313–317.

    Article  CAS  Google Scholar 

  21. Ben-Ari, Y., Krnjevic, K., Reinhardt, W., and Ropert, N. 1981. Intracellular observations on the disinhibitory action of acetylcholine in hippocampus. Neuroscience. 6:2475–2484.

    Article  PubMed  CAS  Google Scholar 

  22. Nillson, O. G., Kalen, P., Rosengren, E., and Bjorklund, A. 1990. Acetylcholine release in the rat hippocampus as studied by microdialysis is dependent on axonal impulse flow and increases during behavioral activation. Neuroscience. 36:325–338.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

In honor of Dr. Sidney Ochs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takenaka, T., Kawakami, T. Signal transduction mechanism responsible for changes in axoplasmic transport caused by neurotransmitters. Neurochem Res 21, 553–556 (1996). https://doi.org/10.1007/BF02527752

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02527752

Key Words

Navigation