Skip to main content
Log in

The heat shock genes in theDrosophila montium subgroup: Chromosomal localization and evolutionary implications

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Thehsp70, hsp83, hsrω, and thesmall heat shock protein genes were mapped on the polytene chromosomes of six species, representative of the geographical distribution of theDrosophila montium subgroup of themelanogaster species group. In addition, based on hybridization conditions, the putative locus of thehsp68 gene is given. In contrast to the situation in themelanogaster subgroup species, thehsp70 locus is single in themontium species. Thehsp83, hsrω and thesmall hsp loci are also single in themontium genomes studied here, a common feature of allDrosophila species. Among thehsp genes studied, thesmall hsp genes and thehsrω-homologous sequences exhibit a higher degree of divergence between themelanogaster and themontium subgroups. Our results support the idea that themontium subgroup species has a genome organization closer to that of the common ancestor compared with themelanogaster subgroup species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ashburner M (1970) Patterns of puffing activity in the salivary gland chromosomes ofDrosophila. V. Responses to environmental treatments. Chromosoma 31:356–376

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M (1989)Drosophila: a laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Becker J, Craig EA (1994) Heat-shock proteins as molecular chaperones. Eur J Biochem 219:11–23

    Article  PubMed  CAS  Google Scholar 

  • Drosopoulou E, Scouras ZG (1995) The β-tubulin gene family evolution in theDrosophila montium subgroup of themelanogaster species group. J Mol Evol 41:293–298

    Article  PubMed  CAS  Google Scholar 

  • Garbe J, Pardue ML (1986) Heat shock locus 93D ofDrosophila melanogaster: a spliced RNA most strongly conserved in the intron sequence. Proc Natl Acad Sci USA 83:1812–1816

    Article  PubMed  CAS  Google Scholar 

  • Hackett RW, Lis JT (1983) Localization of thehsp83 transcript within a 3292 nucleotide sequence from the 63B heat shock locus ofD. melanogaster. Nucleic Acids Res 11:7011–7030

    PubMed  CAS  Google Scholar 

  • Hogan NC, Slot F, Traverse KL, Garbe JC, Bendena WG, Pardue ML (1995) Stability of tandem repeats in theDrosophila melanogaster Hsr-omega nuclear RNA. Genetics 139:1611–1621

    PubMed  CAS  Google Scholar 

  • Holmgren R, Corces V, Morimoto R, Blackman R, Meselson M (1981) Sequence homologies in the 5′ regions of fourDrosophila heat shock genes. Proc Natl Acad Sci USA 78:3775–3778

    Article  PubMed  CAS  Google Scholar 

  • Ingolia TD, Craig EA (1982) FourDrosophila heat shock proteins are related to each other and to mammalian a-crystallin. Proc Natl Acad Sci USA 79:2360–2364

    Article  PubMed  CAS  Google Scholar 

  • Ish-Horowicz D, Pinchin SM (1980) Genomic organization of the 87A7 and 87C1 heat-induced loci ofDrosophila melanogaster. J Mol Biol 142:231–245

    Article  PubMed  CAS  Google Scholar 

  • Kastritsis CD, Scouras ZG, Ashburner M (1986) Duplications in the polytene chromosomes ofDrosophila auraria. Chromosoma 93:381–385

    Article  Google Scholar 

  • Konstantopoulou I, Ouzounis C, Drosopoulou E, Yiangou M, Sideras P, Sander C, Scouras ZG (1995) ADrosophila hsp70 gene contains long antiparallel coupled open reading frames (LAC ORFs) conserved in homologous loci. J Mol Evol 41:414–420

    Article  PubMed  CAS  Google Scholar 

  • Lakhotia SC, Singh AK (1982) Conservation of the 93D puff ofDrosophila melanogaster in different species ofDrosophila. Chromosoma 86:265–278

    Article  Google Scholar 

  • Leigh Brown AJ, Ish-Horowicz D (1981) Evolution of the 87A and 87C heat-shock loci inDrosophila. Nature 290:677–682

    Article  PubMed  CAS  Google Scholar 

  • Lemeunier F, David JR, Tsacas I, Ashburner M (1986) Themelanogaster species group. In: Ashburner M, Carson HL, Thompson J (eds) The genetics and biology ofDrosophila, vol 3e. Academic Press, London Orlando, pp 147–256

    Google Scholar 

  • Lindquist S, Craig EA (1988) The heat shock proteins. Annu Rev Genet 22:631–677

    Article  PubMed  CAS  Google Scholar 

  • Mavragani-Tsipidou P, Scouras ZG (1991) Developmental changes in fat body and midgut chromosomes ofDrosophila auraria. Chromosoma 100:443–452

    Article  PubMed  CAS  Google Scholar 

  • Mavragani-Tsipidou P, Kyrpides N, Scouras ZG (1990) Evolutionary implications of duplications and Balbiani rings inDrosophila: a study ofDrosophila serrata. Genome 33:478–485

    PubMed  CAS  Google Scholar 

  • Mavragani-Tsipidou P, Scouras ZG, Natsiou-Voziki A (1992) The Balbiani ring and the polytene chromosomes ofDrosophila bicornuta. Genome 35:64–67

    PubMed  CAS  Google Scholar 

  • Mavragani-Tsipidou P, Zambetaki A, Kleanthous K, Pangou E, Scouras ZG (1994) Developmental and evolutionary studies on the Afrotropical species ofDrosophila montium subgroup.D. diplacantha andD. seguyi. Genome 37:935–944

    PubMed  CAS  Google Scholar 

  • McGarry TJ, Lindquist S (1985) The preferential translation ofDrosophila hsp70 mRNA requires sequences in the untranslated leader. Cell 42:903–911

    Article  PubMed  CAS  Google Scholar 

  • Molto MD, Pascual L, Martinez-Sebastian MJ, de Frutos R (1992) Genetic analysis of heat shock response in threeDrosophila species of theobscura group. Genome 35:870–880

    PubMed  CAS  Google Scholar 

  • Nikolaidis N, Scouras ZG (1996) TheDrosophila montium subgroup species. Phylogenetic relationships based on mitochondrial DNA analysis. Genome (in press)

  • O'Connor D, Lis JT (1981) Two closely linked transcription units within the 63B heat shock puff ofDrosophila melanogaster display strikingly different regulation. Nucleic Acids Res 9:5075–5092

    PubMed  Google Scholar 

  • Pardue ML (1986) In situ hybridization to DNA of chromosomes and nuclei. In: Roberts DB (ed)Drosophila a practical approach. IRL Press, Oxford Washington DC, pp 111–137

    Google Scholar 

  • Parkash R, Rajput PS (1983) Photomap of the salivary gland chromosomes ofD. jambulina (Parshad and Paika). Dros Inf Serv 59:96–98

    Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Article  PubMed  CAS  Google Scholar 

  • Pauli D, Arrigo AP, Tissières A (1992) Heat shock response inDrosophila. Experientia 48:623–628

    Article  PubMed  CAS  Google Scholar 

  • Peters FPAMN, Lubsen NH, Sondermeijer PJA (1980) Rapid sequence divergence in a heat shock locus ofDrosophila. Chromosoma 81:271–280

    Article  PubMed  CAS  Google Scholar 

  • Pissios P, Scouras ZG (1993) Mitochondrial DNA evolution in themontium species subgroup ofDrosophila. Mol Biol Evol 10: 375–382

    PubMed  CAS  Google Scholar 

  • Ritossa FM (1962) A new puffing pattern induced by temperature shock and DNP inDrosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  • Roy S, Lakhotia SC (1977) Photomap of salivary chromosomes ofDrosophila kikkawai. Dros Inf Serv 52:118–119

    Google Scholar 

  • Rutherford SL, Zuker CS (1994) Protein folding and regulation of signalling pathways. Cell 79:1129–1132

    Article  PubMed  CAS  Google Scholar 

  • Schedl P, Artavanis-Tsakonas S, Steward R, Gehring WJ, Mirault ME, Goldschmidt-Clermont M, Moran L, Tissières A (1978) Two hybrid plasmids withD. melanogaster DNA sequences complementary to mRNA coding for the major heat shock protein. Cell 14:921–929

    Article  PubMed  CAS  Google Scholar 

  • Scouras ZG, Kastritsis CD (1984) Balbiani rings and puffs of the polytene chromosomes ofDrosophila auraria. Chromosoma 89:96–106

    Article  Google Scholar 

  • Scouras ZG, Karamanlidou GA, Kastritsis CD (1986) The influence of heat shock on the puffing pattern ofDrosophila auraria polytene chromosomes. Genetica 69:213–218

    Article  Google Scholar 

  • Scouras ZG, Milioni D, Yiangou M, Duchene M, Domdey H (1994) The β-tubulin genes ofDrosophila auraria are arranged in a cluster. Curr Genet 25:84–87

    Article  PubMed  CAS  Google Scholar 

  • Southgate R, Ayme A, Voellmy R (1983) Nucleotide sequence analysis of theDrosophila small heat shock gene cluster at locus 67B. J Mol Biol 165:35–57

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zacharias G. Scouras.

Additional information

Edited by: E. Schmidt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drosopoulou, E., Konstantopoulou, I. & Scouras, Z.G. The heat shock genes in theDrosophila montium subgroup: Chromosomal localization and evolutionary implications. Chromosoma 105, 104–110 (1996). https://doi.org/10.1007/BF02509520

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02509520

Keywords

Navigation