Skip to main content
Log in

Effect of loading rate on the tensile behaviour of concrete: description of the physical mechanisms

  • Technical Notes
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Founded upon several works carried out by the Laboratoire Central des Ponts et Chaussées on the dynamic behaviour of concrete (already published), and upon new ideas about this subject, this article attempts to further develop the analysis of the physical mechanisms. In particular to investigate how the Stéfan effect, the cracking process, and the inertia forces participate together in the dynamic behaviour of a specimen subjected to a uniaxial tensile test. These mechanisms can be summed up as follows:

  1. 1.

    At strain rates smaller than approximately 1 s−1, the main physical mechanism is a viscous mechanism that may be regarded as similar to the Stéfan effect. This mechanism counters both a microcracking localization, leading to an increase of concrete tensile strength, and the macrocrack propagation that leads to failure of the specimen.

  2. 2.

    At strain rates greater than or equal to approximately 10s−1, the forces of inertia become preponderant. They counter microcracking localization and in particular macrocrack propagation.

Résumé

En se basant sur différents travaux réalisés, et déjà publiés, par le Laboratoire Central des Ponts et Chaussées sur le comportement dynamique des bétons, ainsi que sur des réflexions récentes sur le sujet, le présent article s'attache à analyser de manière très poussée les mécanismes physiques à l'origine des effets de vitesse, et notamment la façon dont l'effet Stéfan, et les forces d'inertie interagissent dans le processus de fissuration du béton. Les principaux points qui ressortent de cette analyse sont:

  1. 1.

    Pour des vitesses de déformation inférieures à 1 s−1, le phénomène physique principalement activé est un phénomène visqueux de type effet Stéfan. Ce mécanisme conduit à retarder la localisation de la microfissuration et à augmenter la résistance à la traction du béton.

  2. 2.

    Pour des vitesses de déformation supérieures ou égales à environ 10 s−1, ce sont les forces d'inertie qui sont prépondérantes en intervenant surtout lors de la propagation des macrofissures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rossi, P., ‘A physical phenomenon which can explain the mechanical behaviour of concrete under high strain rates’,Mater. and Struct.,24, (1991), 422–424.

    Article  Google Scholar 

  2. Rossi, P., Van Mier, J. M. G., Boulay, C., and Le Maou, F., ‘The dynamic behaviour of concrete: influence of free water’,Mater. and Struct.,25, (1992), 509–514.

    Article  Google Scholar 

  3. Rossi, P., Van Mier, J. M. G., Toutlemonde, F., Le Maou, F., and Boulay, C., ‘Effect of loading rate on the mechanical behaviour of concrete subjected to uniaxial tension’,Mater. and Struct.,27, (1994), 260–264.

    Article  Google Scholar 

  4. Rossi, P., ‘Dynamic behaviour of concrete: from the material to the structure’,Mater. and Struct.,27, (1994) 319–323.

    Article  Google Scholar 

  5. Toutlemonde, F., Boulay, C. and Gourraud, C., ‘Shock-tube tests of concrete slabs’,Mater. and Struct.,26, (1993), 38–42.

    Article  Google Scholar 

  6. Toutlemonde, F., Rossi, P., Boulay, C., Gourraud, C. and Guédon, D., ‘Dynamic behaviour of concrete: tests of slabs with a shock tube’,Mater. and Struct.,28, (1995), 293–298.

    Article  Google Scholar 

  7. Toutlemonde, F., ‘Comportement dynamique des bétons à hautes performances. État des connaissances et suggestions de recherches’,Bulletin de liaison des Laboratoires des Ponts et Chaussées, No. 187, (1993), 51–60.

    Google Scholar 

  8. Toutlemonde, F., Rossi, P., ‘Shock-tested R. C. slabs: significant parameters’, A.S.C.E. Structure Congress XII, Atlanta, edited by N.C. Baker and B.J. Goodno, vol. 1, (1994), 227–232.

    Google Scholar 

  9. Acker, P., Boulay, C. and Rossi, P., ‘On the influence of initial stresses in concrete and the resulting mechanical effects’,Cement and Concrete Research,17, (1987), 755–764.

    Article  Google Scholar 

  10. Rossi, P. and Wu, X., ‘A probabilistic model for material behaviour analysis and appraisement of the concrete structures’,Magazine of Concrete Research,44, (161), (1992), 271–280.

    Article  Google Scholar 

  11. Bailly, P., ‘Dynamique des bétons et des roches—Modélisation’, Bilan scientifique du GRECO Géomatériaux, 1994, in ‘Mécanique des Géomatériaux’, edited by Darve, Micher and Reynouard, vol. 2, Hermès, Paris 1995.

    Google Scholar 

  12. Reinhardt, H. W., ‘Concrete under impact loading. Tensile strength and bond’, Heron,27, (3), 1982.

  13. Weerheijm, J., ‘Concrete under impact tensile loading and lateral compression’, PhD Thesis T.U. Delft, 1992.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial note: Both Pierre Rossi and François Toutlemonde are working at the Laboratoire Central des Ponts et Chaussées, a French RILEM Titular Member. Pierre Rossi was a member of RILEM Technical Committee 90-FMC on Fracture Mechanics of Concrete, he is still active as a member of the Editorial Group of this committee. He is also participating in the work of the recently set up technical committee on Test and Design Methods for Steel Fibre Reinforced Concrete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossi, P., Toutlemonde, F. Effect of loading rate on the tensile behaviour of concrete: description of the physical mechanisms. Mat. Struct. 29, 116–118 (1996). https://doi.org/10.1007/BF02486201

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02486201

Keywords

Navigation