Skip to main content
Log in

Investigations on the influence of oxygen on corrosion of steel in concrete—Part 2

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In Part I of this article, potentiostatic tests on reinforced concrete specimens under different environmental conditions have been described. The results of these tests have shown that it is possible to define four cases related to the humidity, in which different dominant parameters influence the corrosion rate for the reinforcement, discussed in detail in Part I. The main result is that the diffusion of oxygen is only a significant limiting factor for the corrosion rate when the concrete around the reinforcement is water-saturated and most of the oxygen within the concrete near the reinforcement has been consumed by the cathodic reaction of the corrosion process. As a consequence, the corrosion rate is only influenced by oxygen diffusion through the concrete cover in structures which are submerged or exposed to long term or cyclic water application, thereby causing water saturation of the concrete around the reinforcement for periods of several weeks.

In Part II of this article, the determination of cathodic current-density/potential curves is described. Using the results of these tests and a simplified equivalent electric circuit model for the corrosion process, it is possible to calculate the influence of oxygen diffusion on the corrosion rate of the reinforcement quantitatively for defined conditions. One interesting consequence of this work is that the thickness of the concrete cover does not influence the corrosion rate by reducing the oxygen diffusion rate significantly when the concrete is not water-saturated. However, a sufficiently thick concrete cover is essential due to several other reasons (ingress of chlorides, carbonation, etc.).

Résumé

Dans la première partie de cet article, on a décrit des essais potentio-statiques dans des conditions ambiantes diverses. Les résultats de ces essais ont montré que, pour ce qui regarde l'humidité, on peut définir quatre cas où différents paramètres dominants influent sur la vitesse de corrosion de l'acier. Il apparaît essentiellement que la diffusion d'oxygène ne limite de façon notable la vitesse de corrosion que si le béton enrobant l'acier est saturé d'eau et que la plus grande partie de l'oxygène qui se trouve dans le béton à proximité de l'acier a été consommée par la réaction cathodique du processus de corrosion. En conséquence, la vitesse de corrosion n'est influencée par la diffusion d'oxygène au travers de la couche de béton que dans les ouvrages submergés ou bien en contact répété ou prolongé avec l'eau en sorte que le béton autour de l'acier est saturé d'eau pendant des périodes de plusieurs semaines.

Dans cette deuxième partie de l'article, on présente des courbes densité du courant cathodique/densité du courant potentiel. À l'aide des résultats d'essai et d'un modèle simplifié de circuit électrique pour le processus de corrosion, il est possible de calculer quantitativement et pour des conditions définies l'influence de la diffusion d'oxygène sur la vitesse de corrosion de l'acier. Une conséquence intéressante ressort de ce travail: l'épaisseur de l'enrobage de béton n'a pas d'influence notable sur la vitesse de corrosion due à la réduction de la vitesse de diffusion de l'oxygène quand le béton n'est pas saturé d'eau. Cependant, une épaisseur suffisante de l'enrobage est essentielle pour un certain nombre d'autres raisons (pénétration de chlorures, carbonatation, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schießl, P. and Raupach, M., ‘Chloride induced corrosion of steel in concrete—Investigations with a concrete corrosion cell’, (Butterworths, London, 1989), in ‘The life of structures: the role of physical testing, International Seminar, Brighton, UK, April 1989, Vortrag 27, 226–233.

  2. Schießl, P. and Raupach, M., ‘Influence of blending agents on the rate of corrosion of steel in concrete’, in Durability of concrete; aspects of admixtures and industrial by-products’, 2nd International Seminar, Göteborg, June 1989, 205–214 (Swedish Council for Building Research, 1989—Publ. Nr. D9:89).

  3. Schießl, P. and Raupach, M., ‘Einfluß der Betonzusammensetzung und der Umgebungsbedingungen auf die chloridinduzierte Korrosion von Stahl in Beton: Ergebnisse von Untersuchungen mit Betonkorrosionszellen’, Betoninformationen 30 (4) (1990), 43–54.

    Google Scholar 

  4. Schießl, P. and Raupach, M., ‘Influence of concrete composition and microclimate on the critical chloride content in concrete’, London, Elsevier, 1990, in Corrosion of Reinforcement in Concrete, Internatioanl Symposium, Wishaw, Warwickshire, UK, 21–24 May 1990 (Page, C.L., Treadaway, K.W.J., Bamforth, P.B. (Ed)), S. 49–58.

  5. Schießl, P. and Raupach, M., ‘Influence of the type of cement on the corrosion behaviour of steel in concrete’, (National Council for Cement and Building Materials, New Delhi, 1992) in Proc. 9th International Congress on the Chemistry of Cement, New Delhi, India, 1992, Vol. V, 296–301.

  6. Schießl, P. and Raupach, M., ‘Macrocell steel corrosion in concrete caused by chlorides’, Montreal, CANMET/ACI, 1991, in Second CANMET/ACI International Conference on Durability of Concrete, (Malhotra, V.M. (Ed)), S. 565–583.

  7. Raupach, M. ‘Zur chloridinduzierten Makroelementkorrosion von Stahl in Beton’,Schriftenreihe des Deutschen Ausschusses für Stahlbeton, (1992), 433, Dissertation Beuth, Berlin.

  8. Schießl, P., ‘Corrosion of steel in concrete’, RILEM Report (Chapman and Hall, London, 1988).

    Google Scholar 

  9. Bažant, Ž.P., ‘Physical model for steel corrosion in concrete sea structures—Theory and application’,Journal of the Structural Division,105 (2) (1979), No. ST6, 1137–1153, 1155–1166.

    Google Scholar 

  10. Gjørv, O.E., Vennesland, O. and El-Busaidy, A.H.S., Diffusion of dissolved oxygen through concrete’, in NACE Corrosion '76, 22–26 March 1976, Houston, Texas, Paper 17.

  11. Polder, R.B., ‘Electrochemical investigations into the corrosion of concrete reinforcement in the splash zone’, in Proc. 9th European Congress on Corrosion, Utrecht, 2–6, October 1989 (TNO Institute for Building Materials And Structures, 1989— Project Number 61.5.3610).

  12. Page, C.L., ‘Basic principles of corrosion’, in ‘Corrosion of steel in concrete’, Report of the RILEM Technical Committee 60-CSC, edited by Chapman and Hall, London, 1988, 3–21.

  13. Rehm, G., Nürnberger, U. and Neubert, B. ‘Chloridkorrosion von Stahl in gerissenem Beton. A: Bisheriger Kenntnisstand. B: Untersuchungen an der 30 Jahre alten Westmole in Helgoland. C: Auslagerung gerissener, mit unverzinkten und feuerverzinkten Stählen bewehrter Stahlbetonbalken auf Helgoland’,Schriftenreihe des Deutschen Ausschusses für Stahlbeton (1988), No. 390, 43–144A, Beuth Berlin.

  14. Schwenk, W., ‘Elektrochemische und korrosionschemische Untersuchungen an unlegiertem Stahl in Zementmörtel’,3R International,28 (10) (1989), 666–668.

    Google Scholar 

  15. Schießl, P., ‘Zur Frage der zulässigen Rißbreite und der erforderlichen Betondeckung im Stahlbetonbau unter besonderer Berücksichtigung der Karbonatisierung des Betons’,Schriftenreihe des Deutschen Ausschusses für Stahlbeton,255 (1976), Dissertation (Ernst & Sohn, Berlin, 1976).

    Google Scholar 

  16. Schwenk, W., ‘Korrosionsgefährdung und Schutzmaßnahmen bei Elementbildung zwischen erdverlegten Rohren und Behältern aus unterschiedlichen Metallen’,GWF-Gas/Erdgas,113 (11) (1972), 546–550.

    Google Scholar 

  17. Tuutti, K., ‘Corrosion of steel in concrete’, CBI Research, No. FO 4/82 (Swedish Cement and Concrete Research Institute).

  18. Wilkins, N.J.M. and Lawrence, P.F., ‘Fundamental research mechanisms of corrosion of steel reinforcements in concrete immersed in sea-water’, in ‘Concrete in the oceans, Technical Report (1980), No. 6, Cement and Concrete Association; BCA, 1980 Wexham Springs.

  19. Abel, H.-J. and Kurse, C.-L., ‘Untersuchung über die Auswirkung der Elementbildung zwischen Stahl in Beton und Stahl in Erdboden’,Werkstoffe und Korrosion,33 (1982), 89–93.

    Article  Google Scholar 

  20. Beeby, A.W., ‘Cracking and corrosion’, in Concrete in the oceans, Technical Report (1978), No. 1, (Cement and Concrete Association, WeXham Springs 1978).

    Google Scholar 

  21. Locke, C.E. and Siman, S., ‘Electrochemistry of reinforcing steel in salt-contaminated concrete’, in ‘Corrosion of reinforcing steel in concrete’ (American Society for Testing and Materials Philadelphia, 1980) edited by Tonini, D.E. and Gaidis, J.M., ASTM STP-713, 3–16.

    Google Scholar 

  22. Locke, C.E. and Rincon, O., ‘A study of corrosion electrochemistry of steel in chloride contaminated concrete using a rapid scan polarization technique. in Proc. of the Corrosion '87 Symposium on Corrosion of Metals in concrete, (National Association of Corrosion Engineers, Houston, 1987) 99–116.

    Google Scholar 

  23. Noeggerath, J. ‘Zur Makroelementkorrosion von Stahl in Beton: Potential- und Stromverteilung in Abhängigkeit verschiedener einflußgrößen’, Zürich, Eidgenössische Technische Hochschule, Diss., 1990.

    Google Scholar 

  24. Naish, C.C., Harker, A. and Carney, R.F.A., ‘Concrete inspection: interpretation of potential and resistivity measurements’, in ‘Corrosion of reinforcement in concrete’, International Symposium, Wishaw, Warwickshire, UK, 21–24 May 1990, edited by Page, C.L., Treadaway, K.W.J. and Bamforth, P.B., (Elsevier, London, 1990), 314–332.

    Google Scholar 

  25. Drachnik, K.J., ‘Application of a polymeric anode mesh for cathodic protection to a reinforced concrete structure’, (American Society for Testing and Materials, Philadelphia, 1986), in ‘Corrosion effects of stray currents and the techniques for evaluating corrosion of rebars in concrete’, edited by Chaker, V., ASTM STP-906, 31–42.

  26. Espelid, B., Fidjestol, P. and Nilsen, N., ‘Durability and corrosion behaviour of dynamically loaded offshore concrete structures’, in Proceedings of the International Conference on Concrete in the Marine Environment, London, 22–24.09.1986, (The Concrete Society, London, 1986), 393–404.

    Google Scholar 

  27. Hunkeler, F., ‘Kathodischer Schutz Wissensstand, Einsatzmöglichkeiten und Einsatzgrenzen’, in ‘Korrosion und Korrosionsschutz. Teil 2: Schutz- und Sanierungsmethoden von Stahlbetonbauwerken’, Studientagung Zürich, März 1988, (Schweizerischer Ingenieur- und Architektenverein, Zürich, 1988), 27–42.

    Google Scholar 

  28. Martin, B.L. and Bennet, J.E., ‘An activated titanium mesh anode for the cathodic protection of reinforcing steel in concrete’, in Proc. of the Corrosion '87 Symposium on Corrosion of metals in concrete, (National Association of Corrosion Engineers, Houston, 1987), 255–264.

    Google Scholar 

  29. Scannell, W.T. and Hartt, W.H., ‘Cathodic polarization and fracture property evaluation of a pretensioned steel tendon in concrete’, (National Association of Corrosion Engineers’, Ibid.), 86–98.

    Google Scholar 

  30. Ward, P.M., ‘Cathodic protection: a user's perspective, in ‘Chloride corrosion of steel in concrete, edited by Tonini, D.E. and Dean, S.W., (American Society for Testing and Materials, Philadelphia, 1977), ASTM STP-629), 150–163.

    Google Scholar 

  31. Kaesche, H., ‘Untersuchungen über die Korrosion unlegierter Stähle in Kalziumhydroxydlösung und in feuchtem Beton’,Archiv für das Eisenhüttenwesen,36 (12) (1965), 911–922.

    Google Scholar 

  32. Mueller, K., ‘Elektrochemie der wasserstoffkorrosion’,Werkstoffe und Korrosion,12 (3) (1961), 199–201.

    Google Scholar 

  33. Roeschenbleck B., ‘Die Abhängigkeit der Korrosions-geschwindigkeit vom Polarisationswiderstand und vom Ph-Wert (I+II)’,Metalloberfläche,16, (1962), (2) 38–42, (3) 65–69.

    Google Scholar 

  34. Volmer, M. and Wick, H., ‘Untersuchungen an Wasserstoffelektroden’,Zeitschrift für physikalische Chemie,A150 (203) (1930), 429–445.

    Google Scholar 

  35. Hope, B.B. and Poland, J.S., ‘Cathodic protection and hydrogen generation’,ACI Materials Journal,87 (5) (1990), 469–472.

    Google Scholar 

  36. Forker, W., ‘Elektrochemische Kinetik, 2. Aufl.’, (Akademie Verlag, Berlin, 1989).

    Google Scholar 

  37. Fabjan, C.H., Kazemi, M.R. and Neckel, A., ‘Untersuchungen über den Mechanismus und die Katalyse der kathodischen Sauerstoffreduktion an verschiedenen Metallen’, i, ‘Berichte der Bunsengesellschaft für physikalische Chemie 84’, (1980), 1026–1031.

    Google Scholar 

  38. Hamann, C.H. and Vielstich, W., ‘Elektrochemie, Bd. 1: Elektrolytische Leitfähigkeit, Potentiale, Phasengrenzen’, 2. Aufl. 1985. Bd. 2: Elektrodenprozesse, angewandte Elektrochemie 1981” (Verlag Chemie, Weinheim).

    Google Scholar 

  39. Kaesche, H., ‘Die Korrosion der Metalle. 3. Aufl’, (Springer, Berlin, 1990).

    Google Scholar 

  40. Rechberger, P., ‘Elektrochemische Vorversuche zur Sauerstoffreduktion an Stahl- und Betonelektroden’,Zement und Beton,32 (4) (1987), 154–157.

    Google Scholar 

  41. Schwabe, K. ‘Physikalische Chemie. Bd. 2: Elektrochemie’, 3. erw. Aufl. Berlin: Akademie-Verlag, 1986.

    Google Scholar 

  42. Schießl, P., ‘Schwarzkopf, M., ‘Chloridinduzierte Korrosion von Stahl in Beton’,Betonwerk und Fertigteil-Technik, Wiesbaden,52 (10) (1986), 626–635.

    Google Scholar 

  43. Gjørv, O.E., Vennesland, O. and El-Busaidy, A.H.S., ‘Diffusion of dissolved oxygen through concrete’,NACE Corrosion,76, March 1975, Houston, Texas, Paper 17.

    Google Scholar 

  44. Miyagawa, T. ‘Early chloride corrosion of reinforcing steel in concrete’, Kyoto University, Japan, School of Civil Engineering, Dissertation, 1985.

    Google Scholar 

  45. Stern, M. and Geary, A.L., ‘Electrochemical polarization, Part I: A theoretical analysis of the shape of polarization curves’,Journal of the Electrochemical Society,104 (1) (1957), 56–63.

    Google Scholar 

  46. ACI 222R, ‘Corrosion of metals in concrete’,Journal of the ACI,82 (1) (1985), 3–32.

    Google Scholar 

  47. Rahmel, A. and Schwenk, W., ‘Korrosion und Korrosionsschutz von Stählen’ (Verlag Chemie, Weinheim, 1977).

    Google Scholar 

  48. Bockris, J.O'M. and Drazic, D.M., ‘Electrochemical science’, (Taylor & Francis, London, 1972).

    Google Scholar 

  49. Butler, J.A.V., ‘Studies in heterogeneous equilibria’,Transactions of the Faraday Society,19 (1923), 659–665, 729–733, 734–739.

    Article  Google Scholar 

  50. Hurling, H., ‘Oxygen permeability of concrete’, in Proc. of the RILEM Seminar on the Durability of concrete structures under normal outdoor exposure, Hannover, 26–29 March 1984, (Institut für Baustoffe und Materialprüfung, Hanover, 1984), 91–101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raupach, M. Investigations on the influence of oxygen on corrosion of steel in concrete—Part 2. Mat. Struct. 29, 226–232 (1996). https://doi.org/10.1007/BF02485944

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02485944

Keywords

Navigation