Skip to main content
Log in

Test-piece size for uniformly distributed and concentrated load performance assessment of wood floor panel

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

An examination of North American and European test floors for determination of uniform and concentrated load performances of wood joist floor panels shows that there is a wide variation in the required width to span aspect ratio (1.5 to 8.0) of the test floors. Although the test floors are intended to replicate real floors, there is a minimum width to span aspect ratio that is sufficient to simulate both uniform and concentrated load performances of floor panels. The minimum width to span aspect ratio is conservatively the effective width to span ratio of a one-way spanning plate model of the floor panel. A parametric study of the effective widths in bending of simply supported, fixed and continuous plate one-way models of floor panels has been carried out. An equation for the effective width of the models in terms of the span, thickness and mechanical properties has been derived. Theoretically, the upper bound of the effective width is of the order of 2.0 times the span. Subject to experimental validation, the derived effective width equation is recommended for specifying the size of test piece for determination of uniformly distributed and/or concentrated load performance of wood joist floor panels.

Résumé

L'examen de planchers nord-américains et européens utilisés lors d'essais visant à déterminer les performances de panneaux de plancher de solives sous chargement uniforme et concentré, démontre qu'il y a une grande variation dans le rapport d'aspect nécessaire (1,5 à 8,0) entre la largeur et la portée des panneaux de plancher utilisés. Bien que ces planchers copient une géométrie de plancher projetée, il existe un rapport d'aspect minimum critique qui simule les performances sous chargement uniforme et concentré des panneaux de plancher. Ce rapport minimum est implicitement le rapport d'aspect effectif d'un modèle de plaque couvrant unilatéralement le panneau de plancher. Une étude paramétrique des largeurs effectives en flexion de tels modèles de plaques, simplement soutenues, fixes et continues, a été effectuée. Une équation a été dérivée pour déterminer la largeur effective des modèles en termes de portée, d'épaisseur et de propriétés mécaniques. Théoriquement, la limite supérieure de la largeur effective est de l'ordre de 2,0 fois la portée. Soumise à validation expérimentale, cette équation est recommandée pour spécifier la taille de l'élément étudié en vue de déterminer les performances sous chargement uniforme et concentré des panneaux de plancher en bois.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

biso :

effective width of one-way isotropic plate or panel

borth :

effective width of one-way orthotropic plate or panel

Ex, Ey :

bending moduli of elasticity in the major and minor axes axis of plate or panel, respectively

Gxy, Gyx :

panel shear or shear-through-the-thickness moduli of rigidity in the major and minor axes of plate or panel, respectively

Gxz, Gyz :

planar shear or shear-in-plane moduli of rigidity in the major and minor axes of plate or panel, respectively

L:

span of plate or panel

t:

thickness of plate or panel

W:

width of panel or spacing of blockings

x-axis:

major axis, principal axis in the plane of plate or panel with greater bending strength and stiffness

x, y, z:

rectangular Cartesian and material property axes

y-axis:

minor axis, direction in the plane of plate or panel that is at right angles to the major axis

z-axis:

axis normal to the x-y plane or the plane of plate or panel

vx, vy :

Poisson's ratios in bending in the major and minor axes of plate or panel, respectively

References

  1. European Committee for Standardization, ‘prEN 1195∶1997 Timber structures- Test methods- The performance of structural floor decking’, European Committee for Standardization (CEN), Brussels, Belgium (1997).

    Google Scholar 

  2. American Society for Testing and Materials, ‘ASTM E661-88 Standard test method for performance of wood and wood-based flooring and roofing sheathing under concentrated static and impact loads’, Am. Soc. Testing Mats., Philadelphia (1988).

    Google Scholar 

  3. Thomas, W.H., ‘Models for concentrated load performance assessment of isotropic wood floor sheathings’,Journal of Structural Engineering, ASCE (2002) 129 (8) (2003) 1080–1086.

    Article  Google Scholar 

  4. Bodig, J. and Jayne, B.A., ‘Mechanics of wood and wood composites’ (Krieger Publishing Company, Malabar, Florida, 1993).

    Google Scholar 

  5. Abbott, A.R., Dinwoodie, J.M., Enjily, V. and Page, A.V., ‘Design aid DA9-Use of structural (C5) grade chipboard’, Timber Research and Development Association (TRADA), High Wycombe, Bucks., England (1992).

    Google Scholar 

  6. Bares, R., ‘Tables for the analysis of plates slabs and diaphragm’, (Bauverlag GmbH Wiesbaden und, Berlin, Germany, 1971).

    Google Scholar 

  7. Szilard, R., ‘Theory and analysis of plates-classical and numerical methods’ (Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1974).

    MATH  Google Scholar 

  8. Karacabeyli, E., Lau, P., Henderson, C.R., Meakes, F.V. and Deacon, W., ‘Design rated oriented strandboard in CSA Standards’,Canadian Journal of Civil Engineering 23 (1996) 431–443.

    Article  Google Scholar 

  9. Thomas, W.H., ‘Mechanical properties of structural-grade oriented strand board’,Holz als Roh- und Werkstoff (European Journal of Wood and Wood Products)59 (6), (2001) 405–410.

    Google Scholar 

  10. American Plywood Association, ‘APA Research Report 335C Test methods and performance requirements for floor and roof sheathing’, American Plywood Association (APA). Tacoma, Washington (1976).

    Google Scholar 

  11. Kearley, V.C. and Carruthers, J.G., ‘Report No. RD91204 Assessment of the distribution and effects of concentrated loads applied to wood-based sheet materials’, Timber Research and Development Association (TRADA), High Wycombe, Bucks., England (1991).

    Google Scholar 

  12. Moarcas, O., ‘The measurement and modelling of the effects of concentrated loads on particleboard floor decking’ PhD thesis, Buckinghamshire Chilterns University College, High Wycombe, Bucks., England (1999).

    Google Scholar 

  13. British Standards Institution, ‘BS 5268 Structural use of timber Part 2, 1996—Code of practice for permissible stress design, materials and workmanship’, British Standards Institution (BSI), London, (1996).

    Google Scholar 

  14. Canadian Standards Association, ‘CAN/SCA-0325.1-88 Test methods for construction Sheathing’, Canadian Standards Association, Rexdale, Ont., Canada (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, W.H. Test-piece size for uniformly distributed and concentrated load performance assessment of wood floor panel. Mat. Struct. 37, 732–739 (2004). https://doi.org/10.1007/BF02480519

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480519

Keywords

Navigation