Skip to main content
Log in

Shake table tests on prestressed concrete frames

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Results from small scale models of prestressed concrete frames, tested by a shake table simulating earthquake forces are presented. The primary curves (horizontal force-displacement relationships) and the hysteretic loops are determined experimentally. Concrete strength is approximately between 32 and 84 MPa, and two types of effective prestresses are used, namely, 40 and 80 percent of the yielding stress of the prestressing bars. It is found that the effects of concrete strength and effective prestress on the ductility are significant because the ductility increases with increasing concrete strength and with decreasing effective prestress, and the prestressed concrete frames may have at least a ductility factor of 8.0.

Résumé

Les résultats des modèles à échelle réduite des cadres en béton précontraints, soumis à des essais à partir d'une table vibrante capable de simuler les forces d'un tremblement de terre, sont présentés ci-après. Les courbes primaires (relations force-déplacements horizontales) ainsi que les boucles d'hystérésis sont alors déterminées d'une manière expérimentale. La résistance du béton se situe approximativement entre 32 et 84 MPa, et deux types de précontraintes effectives sont utilisés, à savoir 40% et 80% de la contrainte limite des armatures précontraintes. Il s'est révélé que les effets de la résistance du béton et de la précontrainte effective sur la ductilité sont importants puisque la ductilité augmente avec un accroissement de la résistance du béton ainsi qu'avec une baisse de la précontrainte effective; enfin, les cadres en béton précontraints pourraient présenter un facteur de ductilité d'au moins 8,0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, T. L., Huang, D. and Shahawy, M., ‘Dynamic behavior of slant-legged rigid-frame highway bridge’,Journal of Structural Engineering ASCE,120, (3) (March 1994) 885–902.

    Article  Google Scholar 

  2. Lin, T. Y., ‘Strength of continuous prestressed concrete beams under static and repeated loads’,ACI Journal,52 (1955) 1037–1059.

    Google Scholar 

  3. Mattock, A. H.et al., ‘Comparative study of prestresseeed concrete beams with and without bond’,,68 (1971) 116–125.

    Google Scholar 

  4. Kang, Y. J. and Scordelis, A. C., ‘Nonlinear analysis of prestressed concrete frames’,ASCE, Journal of the Structural Division 106 (ST2) (February 1980) 445–462.

    Google Scholar 

  5. Cohn, M. A. and Frostig, Y., ‘Inelastic behavior of continuous prestressed concreetee beams”,109 (1983) 2292–2309.

    Google Scholar 

  6. Aalamic, B. O., ‘Load balancing: a comprehensive solution to post-tension’,ACI Structural Journal 87 (1990) 662–670.

    Google Scholar 

  7. Mo, Y. L., ‘Zur Ermittlung der Momenteenumlagerung in Spannbeton-Tragwerken’,Beton-und-Stahlbetonbau, Germany,88 (10) (1993) 262–266.

    Google Scholar 

  8. Clough, R. W., ‘Effect of Stiffness Degradation on Earthquake Ductility Requirements’, Report No. 6614, Structural and Material Research, University of California, Berkeley, 1966.

    Google Scholar 

  9. Takeda, T., Sozen, M. A., and Nielsen, N. N., ‘Reinforced concrete response to simulated earthquakes’,ASCE, J. Struct. Div. 96 (12) (1970) 2557–2573.

    Google Scholar 

  10. Oliva, M. G. and Clough, R. W., ‘Biaxial seismic response of R/C frames’,Journal of Structural Engineering, ASCE 113 (6) (June 1987) 1264–1281.

    Article  Google Scholar 

  11. Wallace, J. W. and Moehle, J. P., ‘Ductility and detailling requirements of bearing wall buildings’,118 (6) (June 1992) 1625–1644.

    Google Scholar 

  12. Blakeley, R. W. G. and Park, R., ‘Prestressed concrete sections with seismic loading’,ASCE, Journal of the Structural Division 99 (ST8) (August 1973) 1717–1742.

    Google Scholar 

  13. Russel, H. G., ‘High-strength Concrete in North America’, in ‘Utilization of High-strength Concrete’, Proceedings of Stavanger Symposium, Norway, June 1987, 561–572.

  14. Tanaka, K., Sato, K., Watanabe, S., Arima, I. and Suenaga, K., ‘Development and Utilization of High Performance Concrete Employed in the Akashi Kaikyo Bridge’, ACI Special Publication, SP-140, 1993, 25–51.

  15. Aïtcin, P. C., Ballivy, G., Mitchell, D., Pigeon, M. and Couombe, L. G., ‘The Use of High Performance Air Entrained Concrete for the Construction of the Portneeuf Bridge’,Ibid. ACI Special Publication, SP-140, 1993, 53–72.

  16. Bris, J. L., Redoulez, P., Augustin, V., Torrenti, J. M., and de Larrard F., ‘High Peerformance Concretes in the Elorn Bridge,Ibid. ACI Special Publication, SP-140, 1993, 73–93.

  17. Park, R., Priestley, M. J. and Gill, W. D., ‘Ductility of square-confined concrete columns’,Journal of the Structure Division, ASCE 108 (ST4) (1982) 929–950.

    Google Scholar 

  18. Corley, W. G., ‘Rotational capacity of reinforced contete beams’, 92 (ST5) (1966) 121–146.

    Google Scholar 

  19. Meyer, C., Roufaiel, M. S. L. and Arzoumanidis, S. G. ‘Analysis of damaged concrete frames for cyclic loads’,Earthquakes Engineering and Structural Dynamics 11 (1983) 207–228.

    Google Scholar 

  20. Gere, J. M. and Timoshenko, S. P., ‘Mechanics of Materials’ (Third Edition, Chapman & Hall, London, 1991) 807pp.

    Google Scholar 

  21. Mo, Y. L., ‘Dynamic Behavior of Concrete Structures’ (Elsevier Science B. V., Amsterdam, June 1994).

    Google Scholar 

  22. ACI Committee 318, ‘Building Code Requirements for Reinforced Concrete and Commeeentary (ACI 318-89/ACI 318R-89)’, American Concrete Institute, Detroit, 1989, 353pp.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mo, Y.L., Hwang, W.L. Shake table tests on prestressed concrete frames. Mat. Struct. 31, 676–682 (1998). https://doi.org/10.1007/BF02480444

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480444

Keywords

Navigation