Skip to main content
Log in

Constitutive relations for bituminous concrete using double lap shear tests

  • Published:
Matériaux et Construction Aims and scope Submit manuscript

Abstract

The scope of this progress report was to a. investigate a new method for obtaining shear properties of bituminous concrete, b. obtain constitutive relations for fundamental properties using this method, c. show the sensitivity of the procedures, d. detect property variations as functions of source of asphalt and a small amount of latex additive, and e. demonstrate possible design use of the properties obtained. The method used was the double lap shear test, which has been used extensively for viscoelastic characterization of solid propellant, but which has not been used previously to characterize bituminous concrete. The results showed that the procedures can be used to better quantify the fundamental mechanical properties of bituminous concrete in shear and that highway design procedures can be improved by the use of these properties.

Résumé

L'essai de cisaillement avec double recouvrement, couramment utilisé pour la détermination des constantes viscoélastiques des propergols, a ici servi à déterminer les propriétés fondamentales en cisaillement d'un béton flexible. On a élaboré un programme de calculateur numérique afin d'établir les relations caractéristiques, et les évaluations statistiques, et d'opérer les conversions des modules et des coefficients depuis les essais à vitesse de chargement constante aux autres modes de chargement. Par ces procédés, on a évalué les différences de propriétés du béton dues uniquement au type d'asphate employé; du latex ajouté à l'un des asphaltes a servi à caractériser un troisième mélange. Les résultats montrent nettement et quantitativement une amélioration des propriétés du béton due à l'addition de latex. On donne des exemples d'application des données caractéristiques, avec les facteurs de variation de température dans le temps, aux calculs de stabilité des chaussées flexibles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A, B:

constants numeric

a, b:

constants numeric

a T :

time-temperature shift factor numeric

CEM, CERM:

constant strain and constant strain rate moduli ksi

COC:

coefficient of correlation percent

CSC, CSRC:

constant stress and constant stress rate compliance 1.0/ksi

DEGF:

degrees of freedom numeric

DIS, DIT:

indicated deformation for secant and tangent moduli in

DMS, DMT:

machine deformation at secant and tangent moduli in

DS, DE* :

deviation of ultimate stress and strain, respectively percent

E:

Ultimate shear strain percent

F:

function of

FAD:

field average deviation percent

f, h:

constants numeric

N:

number of specimens numeric

NS:

specimen number numeric

P n , P w :

probability of null and working hypotheses percent

Q:

stress rate of loading psi/min

R:

strain rate of loading percent/min

S:

ultimate shear stress psi

S o :

constant stress level psi

SEC:

Ultimate secant modulus ksi

SF, TF:

secant and tangent force, respectively lb

STV:

Student t test value numeric

T:

temperature0F

t:

time min

TAN:

initial tangent modulus ksi

TTF:

time to failure min

References

  1. Cost T.L. andParr C.H.Analysis of the Biaxial Strip Test and Shear Lap Tests for Solid Propellant Characterization, Rep. S-73, May 12, 1967, Rhom and Haas Co., Redstone Res. Lab. Huntsville, Ala. 35807.

    Google Scholar 

  2. ICRPG Solid Propellant Mechanical Behavior Manual, Publ. No. 21, Feb. 1968, Chemical Propellant Information Agency, John Hopkins Univ., 8621 Georgia Ave., Silver Springs, Maryland.

  3. Bynum D. Jr.,Traxler R.N. andLedbetter W.B.Application of Solid Propellant Technology to Flexible Pavement Design, presented at Annual HRB Meeting, Jan. 1970.

  4. Bynum D. Jr.—A Partial Solution for the Solid Waste Problem, presentation to Highway Technical Group, Texas Section ASCE, May 1, 1970, pp. 1–21.

  5. Barber E.S.Shear Loads on Pavements, Proc. Intl. Conf. on the Structural Design of Asphalt Pavements Proceedings, Aug. 20–24, 1962, p. 354, Univ. Mich.

  6. Bynum D. jr., Traxler R.N.Gel Permeation Chromatography Data on Asphalts Before and After Service in Pavements, AAPT V. 39, 1970, pp. 683–702.

    Google Scholar 

  7. Bynum, D. Jr., Traxler R.N., Parker H.L. andHam J.S.Correlation of GPC Data with Hardening of Asphalt by Oxidation and Ultraviolet Radiation, J. Inst. Pet. (London), V. 56, No. 549, May 1970, pp. 147–154.

    Google Scholar 

  8. Goode J.F. andLufsey L.A.A New Graphical Chart for Evaluating Aggregate Gradations, AAPT, 1962, pp. 176–207.

  9. Jimenez R.A.An Apparatus for Laboratory Investigations of Asphaltic Concrete Under Repeated Flexural Deformations, Ph.D. Dissertation, Jan. 1962, Texas A. & M. Univ.

  10. Jimenez R.A.Aspects on the Binding Strength of Asphaltic Concrete, AAPT, V. 36, 1967, pp. 703–730.

    Google Scholar 

  11. Layman A.H.A Study of the Flexural Properties of a Black Base, Ph.D. Dissertation, Jan. 1968, Texas A. & M. Univ.

  12. Mix Design Methods for Asphalt Concrete, The Asphalt Institute, Manual Series No. 2 (MS-2), 2nd Ed., Feb. 1962.

  13. Melosh R.J.Basis for Derivation of Matrices for the Direct Stiffness Method, AIAA J., V. 1, No. 7, July 1963.

  14. Grafton P.E. andStrome D.R.Analysis of Axisymmetrical Shells by the Direct Stiffness Method, AIAA J., V. 1, No. 10, Oct. 1963.

  15. Clough R.W., Martin H.C., Topp L.J. andTurner M.J.Stiffness and Deflection Analysis of Complex Structures, J. Aero. Sc., V. 23, No. 9, Sep. 1956.

  16. Duncan J.M., Monismith C.L. andWilson E.L.Finite Element Analysis of Pavements, HRB Record, No. 228, 1968.

  17. Westmann R.A.Stress Analysis by Finite Elements, HRB Record, No. 228, 1968.

  18. Williams, M.L., Schapery R.A., Zak A.R. andLindsey G.H.The Triaxial Tension Failure of Viscoelastic Materials, GALCIT SM 63-6, Feb. 1963, Calif. Inst. Tech.

  19. Lindsey G.H.Hydrostatic Tensile Fracture of a Polyurethane Elastomer, Ph.D. Dissertation, 1966, Calif. Inst. Tech.

  20. Timoshenko S. andGoodier J.N.Theory of Elasticity, 1951, McGraw-Hill.

  21. Alexander R.L.Limits of Linear Viscoelastic Behavior of an Asphalt Concrete in Tension and Compression, Ph.D. Dissertation, June 1964, Univ. Calif., Berkeley.

    Google Scholar 

  22. Kallas B.F.Asphalt Pavement Temperatures, HRB Record, No. 150, 1966, p. 1.

    Google Scholar 

  23. Thompson P.D.Merits of Adding Natural Rubber to Bituminous Road Surfacing Materials, HRB Record, No. 273, pp. 87–98.

  24. Smith, T.L.Ultimate Tensile Properties of Elastomers. I. Characterization by a Time and Temperature Independant Failure Envelope, J. Poly. Sc., V.A 1, 1963, pp. 3597–3615.

    Google Scholar 

  25. Ferry J.D.Mechanical Properties of Substances of High Molecular Weight. VI. Dispersion in Concentrated Polymer Solutions and Its Dependence on Temperature and Concentration, J. Am. Chem. Soc., V. 72, 1950.

  26. Haas R.C.G.The Low-Temperature Behavior of Flexible Pavement Surfaces, presented to Canadian Technical Asphalt Assoc., Ottawa, Nov. 1968.

  27. Smith T.L.Measurement and Analysis of Small Deformation and Ultimate Tensile Properties of Amorphous Elastomers, Instron Application Series, PC-5, 1960.

  28. Williams M.L., Landel R.F. andFerry J.D.The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids, J. Am. Chem. Soc., V. 77, 1955, p. 3701.

    Article  Google Scholar 

  29. Schmidt R.J.The Relationship of the Low-Temperature Properties of Asphalt to the Cracking of Pavements, AAPT, V. 35, 1966.

  30. Marek C.R.Estimation of the Tensile Strength of Asphalt Cements in Thin Films, J. Matls., V. 5, No. 1, March 1970, pp. 3–17.

    Google Scholar 

  31. Majidzadeh K.Rheological Aspects of Aging, HRB Record, No. 231, pp. 68–81.

  32. Brodnyan, J.G.Use of Rheological and Other Data in Asphalt Engineering Problems, HRB Bul., 192, pp. 1–19.

  33. Haas R.C.G. andPhang W.A.Case Studies of Pavement Shrinkage Cracking as Feedback for a Design Subsystem, presented at annual HRB meeting, Jan. 1970.

  34. Haas R.C.G. andAnderson K.O.A Design Subsystem for the Response of Flexible Pavements at Low Temperatures, AAPT, V. 38, 1969, pp. 179–213.

    Google Scholar 

  35. Bynum D. Jr.—Performance Requirements for Flexible Pavements, Ph.D. Dissertation, Aug. 1969, Texas A. & M. Univ.

  36. Bynum, D. Jr.—A Thermoviscoelastic Characterization of an Asphaltic Concrete, Res. Rep. 127-2, Research Study No. 2-8-69-127, Texas Transportation Inst., Texas A. & M. Univ., May 1970.

Download references

Author information

Authors and Affiliations

Authors

Additional information

The first accounts of comprehensive constitutive relations for bituminous concrete were published in the May 1971 issue of Materials and Structures—We are referring to the paper on split cylinder tests by Bynum, Agarwal, and Fleisher. It was therefore normal that we should publish here the present article, in which the authors give the constitutive relations for a new type of shear test on bituminous concrete with proposed design use of the results.

PE, Ph. D. in Interdisciplinary Engineering, Assistant Research Engineer in the Texas Engineering Experiment Station, College of Engineering and Member of the Graduate Faculty at Texas A. & M. University, College Station, Tex. 77843 at the time of this work, and now Manager of Research and Development at The Offshore Company in Houston, Tex.

BSME, Engineering Research Assistant in the College of Engineering at Texas A. & M. Univ. at the time of this work, and now Research Assistant at North Texas State University in Denton, Tex.

BSCE, MSCE, Engineering Research Associate in the College of Engineering at Texas A. & M. Univ. at the time of this work, and now First Lieutenant in U.S. Army, Viet Nam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bynum, D., Evertson, J.F., Fleisher, H.O. et al. Constitutive relations for bituminous concrete using double lap shear tests. Mat. Constr. 5, 21–30 (1972). https://doi.org/10.1007/BF02479074

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02479074

Keywords

Navigation