Skip to main content
Log in

Surface tension skrinkage and strength of hardened cement paste

  • Colloque RILEM Munich. 1–3 Avril 1968
  • Causes Physiques et Chimiques du Fluage et du Retrait du Béton
  • Published:
Matériaux et Construction Aims and scope Submit manuscript

Résumé

La tension superficielle et l'énergie superficielle d'un solide se trouvent diminuées par la présence d'une pellicule d'eau adsorbée. Quand la tension superficielle d'un matériau poreux à grande surface interne est diminuée, la longueur augmente tandis que la résistance diminue. En s'appuyant sur la théorie de la propagation des fissures de Griffith, il est possible de calculer l'énergie superficielle. Pour une pâte de ciment durcie ayant un rapport eau/ciment de 0,45 et de 0,6, l'énergie superficielle se révèle être de 1370 erg/cm2 et de 657 erg/cm2 respectivement. On a laissé la pâte de ciment s'hydrater durant 28 jours sans perdre d'humidité à une température de 20 °C. Ces résultats concordent avec l'énergie superficielle du verre poreux possédant une surface similaire.

Summary

The surface tension and the surface energy of a solid is reduced by the presence of an adsorbed water film. When the surface tension of a porous material with a large interior surface is reduced, the length increases whereas the strength decreases. With the help of Griffith's theory of crack propagation it is possible to calculate the surface energy. For hardened cement paste with a water cement ratio of 0.45 and 0.6 the surface energy is found to be 1370 erg/cm2 and 657 erg/cm2 respectively. The cement paste was allowed to hydrate for 28 days without loss of moisture at a temperature of 20 °C. These results are in agreement with the surface energy of porous glass with a similar interior surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Gibbs, J. W.,Collected Works Vol. 1 London (1928), or Collected Works, New Haven, Gale University Press (1957).

    Google Scholar 

  2. Nicolson, M. M., Proc. Roy. Soc.A 228, 490 (1955).

    MATH  Google Scholar 

  3. Shuttleworth, R., Proc. Phys. Soc.A 63, 444 (1950).

    Article  Google Scholar 

  4. Prandtl, L., Ann. Phys.,VI, 1, 59 (1947).

    Google Scholar 

  5. Pickett, G., J. appl. Phys.17, 61 (1946).

    Article  Google Scholar 

  6. Udin, H., Shaler, A. J., Wulff, W., J. Metals,1 186 (1949).

    Google Scholar 

  7. Birks, L. S., Friedman, H., J. appl. Phys.,17, 687 (1946).

    Article  Google Scholar 

  8. Constabaris, G., Lindquist, B. H., Kündig, W., Appl. Phys. Letters7, 59 (1965).

    Article  Google Scholar 

  9. Kündig, W., Bömmel, H., Constabaris, G., Lindquist, R. H., Phys. Rev.142, 327 (1966).

    Article  Google Scholar 

  10. Burton, J. W., Frauenfelder, H., Godwin, R. P., S. 73 in: International Atomic Energy Agency, Technical Reports Series no 50, Wien (1966).

  11. Powers, T. C., International Conference on the Structure of Concrete, London (1965), Paper G 1.

  12. Bangham, D. H., Trans. Faraday Soc.,33, 805 (1937).

    Article  Google Scholar 

  13. Bangham, D. H., Razouk, R. I., Trans. Faraday Soc.33, 1459 and 1463 (1937).

    Article  Google Scholar 

  14. Yates, D. J. C.,Molecular specificity in physical adsorption in advances in catalysis, vol. XII, 265 (1960).

    Google Scholar 

  15. Volmer, M., Adhikari, G., Z. Physik85, 170 (1926).

    Article  Google Scholar 

  16. Hill, T. L., “Theory of physical adsorption in advances in catalysis”. Vol. IV, 211 (1952).

    Google Scholar 

  17. Bangham, D. H., Fakhoury, N., Proc. Roy, Soc.A 130, 81 (1931).

    Google Scholar 

  18. Bangham, D. H., Fakhoury, N., J. Chem. Soc. 1324 (1931).

  19. Amberg, C. H. Mc. Intosh, R., Canad. J. Chem.30, 1012 (1952).

    Article  Google Scholar 

  20. Bangham, D. H., Maggs, F. A. P.,Conference on the Ultrafine Structure of Coals and Cokes, British Coal Utilization Research Association Committee, H. K. Lewis & Co. Ltd. London (1944).

    Google Scholar 

  21. Hiller, K. H., J. appl. Phys.,35, 1622 (1964).

    Article  Google Scholar 

  22. Yates, D. J. C., Proc. Roy. Soc.A 224, 526 (1954).

    Google Scholar 

  23. Griffith, A., Phil. Trans. Roy, Soc.A 221, 163 (1920).

    Google Scholar 

  24. Freudenthal, A. M.,Inelastisches Verhalten von Werkstoffen, VEB-Verlag Technik, Berlin (1955).

    Google Scholar 

  25. Flood, E. A.,Advances in chemistry Series no33, 249 (1961) American Chemical Society Washington.

    Google Scholar 

  26. Brunauer, S., Kantro, D. L., Weise, C. H., Canad. J. Chem.,34, 729 (1956).

    Article  Google Scholar 

  27. Brunauer, S., Kantro, D. L., Weise, C. H., Canad. J. Chem.34, 1483 (1956).

    Article  Google Scholar 

  28. Brunauer, S., Kantro, D. L., Weise, C. H., Canad. J. Chem.37, 714 (1959).

    Article  Google Scholar 

  29. Kantro, D. L., Brunauer, S., Weise, C. H., J. Colloid. Sci.14, 363 (1959) und PCA-Research Department Bulletin no107.

    Article  Google Scholar 

  30. Kantro, D. L., Weise, C. H., Brunauer, S., Highway Research Board, Special Report90, 309 (1966) and PCA-Research Department Bulletin209.

    Google Scholar 

  31. Pihlajavaara, S. E., State Institute for Technical Research, Report, Series III-Building74, Helsinki (1963).

  32. Pihlajavaara, S. E., State Institute for Technical Research, Report, Series III-Building76, Helsinki (1964).

  33. Pihlajavaara, S. E., Proc. Rilem/CIB Symposium on Moisture Problems in Buildings, Otaniemi, Finland August 1965.

  34. Pihlajavaara, S. E., State Institute for Technical Research, Publication100, Helsinki (1965).

  35. Sereda, P. J., Feldman, R. F., Swenson E. G., Special Report90, 58 (1966) Highway Research Board, Washington D. C. or Research Paper no 308 of the Division of Building Research March (1967).

    Google Scholar 

  36. Polzer, E.,Diplomarbeit, angefertigt am Lehrstuhl für Baustoffkunde und Werkstoffprüfung der T. H. München (1967).

  37. Fischer, S.,Dissertation, T. H. Darmstadt (1967).

  38. Copeland, L. E., Bragg, R. H., ASTM-Bulletin, T. P.41, 34 (1955).

    Google Scholar 

  39. Feldman, R. F., Sereda, P. J., J. appl. Chem.14, 87–93 (1964).

    Article  Google Scholar 

  40. Ruetz, W.,Das Kriechen des Zementstein im Beton und seine Beeinflussung durch gleichzeitiges Schwinden, Deutscher Ausschuss für Stahlbeton Heft183 (1966).

  41. Splittgerber H., Wittmann, F.,Zement-Kalk-Gips19, 493 (1966) andH. Splittgerber, Diplomarbeit, Laboratorium für Technische Physik der T. H. München (1965).

    Google Scholar 

  42. Czernin, W., Zementchemie f. Bauingenieure. Bauverlag Wiesbaden-Berlin, 2. Auflage (1964).

  43. Schoening, F. R. L., J. appl. Phys.31, 1779 (1960).

    Article  Google Scholar 

  44. Panasiuk, V. V., Kovchik, S. E., Dokl. Akad. Nauk SSSR 146, 82 (1962).

    Google Scholar 

  45. Wiederhorn, S. M.,Fracture surface energy of soda-lime-glass. Kap. 27 in Materials Science Research vol.3, 503 (1966) Herausgeb: W. W. Kriegel und H. Palmour.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittmann, F. Surface tension skrinkage and strength of hardened cement paste. Matériaux et Constructions 1, 547–552 (1968). https://doi.org/10.1007/BF02473643

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02473643

Keywords

Navigation