Skip to main content
Log in

La conductivité thermique ‘à sec’ des bétons cellulaires autoclavés: un modèle conceptuel

  • Published:
Materials and Structures Aims and scope Submit manuscript

Résumé

Dans cet article, nous présentons un modèle de l'influence du taux de macroporosité cellulaire sur la conductivité thermique à sec des bétons cellulaires autoclavés qui procure un cadre conceptuel efficace dans la perspective d'une amélioation des performances thermiques de ce matériau. Pour construire ce modèle, nous séparons micro et macroporosité et nous considérons la structure interne du béton cellulaire comme une dispersion de ‘bulles’ remplies d'air dans une matrice solide supposée homogène à l'échelle de ces macropores. Un concept de ‘tortuosité’ est introduit pour construire une ‘cellule élémentaire’ sur laquelle peut être évaluée analytiquement une conductivité thermique ‘équivalente’. Pour valider expérimentalement le modèle proposé, une série de mesures de conductivité thermique ont été effectuées sur des produits expansés de diverses densités et sur des échantillons non-expansés dans un état sec standard. Pour réaliser ces mesures, nous avons adopté une méthode de détermination de la conductivité thermique en régime transitoire utilisant une sonde à chocs thermiques ‘monotige’. Des mesures de taux de macroporosité cellulaire ont été également réalisées par analyse d'images.

Summary

In this article, we present a model of the relationship between the rate of macroporosity and the thermal conductivity of autoclaved aerated concrete (AAC) in a dry state which should provide an efficient frame for improving the thermal performances of this material. Such a model has to be developed because ‘classical’ models of heat conductivity of heterogeneous materials, although they are very numerous, all predict values, in the case of AAC, which differ much from the experimentally measured data. The main reason why they are not well adapted is due to the particular porous structure of AAC, showing two main types of porosity which are of completely different origins. Therefore, considering the total porosity as the main parameter is not the right approach to understanding the thermal properties of AAC.

So, to build our model, we clearly separate micro- and macro-porosity and we consider the internal structure of AAC as a dispersion of air ‘bubbles’ in a solid skeleton which is assumed to be homogeneous at the scale of these macropores. A ‘tortuosity’ parameter is introduced to build an ‘elementary cell’ for which an equivalent heat conductivity can be calculated.

To allow an experimental validation of the proposed model, heat conductivity measurements have been carried out on products of various densities (between 0.25 and 0.65) in a standard dry state. For that purpose, we have used a thermal shock probe method in which the heat conductivity is determined in a transient way. Image analysis techniques have been implemented to characterize the rate of macroporosity of these samples. Non-aerated samples have also been prepared (by the same process as for AAC but with no aluminium powder) to determine the density and heat conductivity of the solid skeleton of AAC.

Finally, the proposed model has shown good agreement over the whole range of macroporosity between the values of heat conductivity that can be evaluated by using it and the data actually measured. We therefore consider it is now possible to use this model to improve the thermal conductivity of AAC. Considering the parameters taken into account in this model, three different types of action may be undertaken: increase the rate of macroporosity, reduce the heat conductivity of the solid skeleton, or increase the tortuosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Tada, S., ‘Material design of aerated concrete. An optimum performance design’,Matér. Constr. 19 (109) (1986) 21–26.

    Google Scholar 

  2. Coster, M. et Chermant, J. L., ‘Précis d'analyse d'images’, 2ème édn (Presses du CNRS, Paris, 1989).

    Google Scholar 

  3. Laurent, J. P., ‘Evaluation des paramètres thermique d'un milieu proreux: optimisation d'outils de mesure in situ’,Int. J. Heat & Mass Transfer 32 (7) (1989) 1247–1259.

    Article  Google Scholar 

  4. Crane, R. A. et Vachon, R. I., ‘A prediction of the bounds on the effective thermal conductivity of granular materials’,20 (1977) 711–723.

    Article  Google Scholar 

  5. Dawson, D. M. et Briggs, A., ‘Prediction of thermal conductivity of insulation materials’,J. Mater. Sci. 16 (1981) 3346–3356.

    Article  Google Scholar 

  6. Vachon, R. I., Prakouras, A. G., Crane, R. A. et Khader, M. S., Thermal conductivity of heterogeneous mixtures and lunar soils’, Final Report, NASA Contract 26579 (Auburn University, USA 1973).

    Google Scholar 

  7. Prim, P. et Wittmann, F. H., ‘Structure and water absorption of aerated concrete’, in Autoclaved Aerated Concrete, Moisture and Properties’ (Elsevier, Amsterdam, 1982) pp. 55–69.

    Google Scholar 

  8. Tada, S. et Nakano, S., ‘Microstructural approach to properties of moist cellular concrete’,ibid. pp. 71–88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurent, J.P. La conductivité thermique ‘à sec’ des bétons cellulaires autoclavés: un modèle conceptuel. Materials and Structures 24, 221–226 (1991). https://doi.org/10.1007/BF02472988

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02472988

Navigation