Skip to main content
Log in

Capillary water migration in rock: process and material properties examined by NMR imaging

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

We report the application of proton nuclear magnetic resonance (NMR) imaging to the measurement of water content distributions in Lépine limestone, a typical constructional stone. The method is used to observe the kinetics of the absorption of water into this material by capillarity. The water content distributions are consistent with the predictions of unsaturated flow theory. The hydraulic diffusivity of Lépine stone is found to be an approximately exponential function of the water content, in agreement with experimental data on other porous materials. The best estimate of the diffusivity function is D (m2s−1) = 6.3 × 10−9 exp (4.90θ r), whereθ r is the normalized volumetric water content. The sorptivity estimated from NMR data is in close agreement with the directly measured value (1.00 mm min−1/2). NMR imaging methods appear promising as a non-destructive and rapid laboratory means of determining moisture distributions, especially for the purpose of accurate measurement of the capillary transport properties of porous materials.

Resume

On décrit l’application de l’imagerie de résonance magnétique nucléaire (RMN) à la mesure de distributions de teneur en eau dans le calcaire Lépine, pierre de construction type. On présente les résultats d’une expérience où l’eau est absorbée librement par capillarité de l’extrémité d’une barre rectangulaire. On utilise l’imagerie RMN pour contrôler la vitesse d’absorption de l’eau. On obtient, par l’analyse des images, les distributions à l’intérieur de l’échantillon en fonction du temps.

Les distributions de teneur en eau concordent avec l’application de la théorie de l’écoulement en milieu non saturé. La diffusivité hydraulique et le coefficient de sorption se calculent à partir des profiels d’absorption d’eau. Le coefficient de diffusion de la pierre de Lépine est une fonction approximativement exponentielle de la teneur en eau, conforme aux données expérimentales des autres matériaux poreux. La meilleure estimation de la fonction de diffusion est D (m2s−1) = 6.3 × 10−9 exp (4.90θ r), oùθ r est la teneur en eau volumétrique normalisée.

Le coefficient de sorption évaluée à partir des données RMN concorde tout à fait avec la mesure directe (1,00 mm min−1/2). Les méthodes d’imagerie RMN semblent prometteuses en tant que technique de laboratoire non-destructive et rapide pour déterminer les distributions d’humidité, et en particulier, mesurer avec précision les propriétés de mouvement d’eau par capillarité de matériaux poreux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ‘Outline of a national plan on high-performance concrete: report on the NIST/ACI Workshop, May 16–18, 1990’, NISTIR 4465 (US Department of Commerce, 1990).

  2. Chaddock, J. B. and Todorovic, B. (eds), ‘Heat and Mass Transfer in Building Materials and Structures’ (Hemisphere, New York, 1991).

    Google Scholar 

  3. Hall, C., ‘The water sorptivity of mortars and concretes: a review’,Mag. Concr. Res. 41 (1989) 51–61.

    Article  Google Scholar 

  4. Kumaran, M. K. and Bomberg, M., ‘A gamma-spectrometer for determination of density distribution and moisture distribution in building materials’, in Proceedings of International Symposium on Moisture and Humidity, Washington, DC, April 1985 (Instrument Society of America, Research Triangle Park, NC, USA, 1985) pp. 485–490 (NRCC DBR paper 1302).

    Google Scholar 

  5. Kumaran, M. K., ‘Gamma-spectroscopic determination of moisture distribution in medium-density glass fibre insulation’, NRCC Building Research Note 242 (1986).

  6. Nielsen, A. F., ‘Free water intake of cellular concrete and bricks measured by gamma ray attenuation’, Report No. 41 (Thermal Insulation Laboratory, Technical University of Denmark, Copenhagen, 1976).

    Google Scholar 

  7. Daïan, J.-F., ‘Condensation and isothermal water transfer in cement mortar: Part I—pore size distribution, equilibrium water condensation and imbibition’,Transp. Porous Media 3 (1988) 563–589.

    Article  Google Scholar 

  8. Prazák, J., Tywoniak, J., Peterka, F. and Slonc, T., ‘Description of transport of liquid in porous media—a study based on neutron radiography data’,Int. J. Heat Mass Transfer 33 (1990) 1105–1120.

    Article  Google Scholar 

  9. Quénard, D. and Sallée, H., ‘A gamma-ray spectrometer for measurement of the water diffusivity of cementitious materials’ in ‘Pore Structure and Permeability of Cementitious Materials’, edited by L. R. Roberts and J. P. Skalny, MRS Symposium Series No. 137 (Materials Research Society Pittsburgh, 1989).

    Google Scholar 

  10. Gummerson, R. J., Hall, C., Hoff, W. D., Hawkes, R., Holland, G. N. and Moore, W. S., ‘Unsaturated water flow within porous materials observed by NMR imaging”,Nature 281 (1979) 56–57.

    Article  Google Scholar 

  11. Hayashi, K., ‘NMR imaging of advanced ceramics during the slip casting process’,J. Phys. D 21 (1988) 1037–1039.

    Article  Google Scholar 

  12. Ackerman, J. L. and Ellingson, W. A. (eds), ‘Advanced Tomographic Imaging Methods for the Analysis of Materials’, MRS Symposium Proceedings No. 217 (Materials Research Society, Pittsburgh, 1991).

    Google Scholar 

  13. Fordham, E. J., Roberts, T. P. L., Carpenter, T. A., Hall, L. D., Maitland, G. C. and Hall, C., ‘Nuclear magnetic resonance imaging of simulated voids in cement slurries’,AIChEJ 37 (1991) 1895–1899.

    Article  Google Scholar 

  14. Fordham, E. J., Horsfield, M. A., Hall, C. and Hall, L. D., ‘Low-contrast secondary imbibition in long rock cores’,Magn. Reson. Imaging 9 (1991) 803–808.

    Article  Google Scholar 

  15. Hall, C., ‘Water transport in porous building materials—IV. The initial surface absorption and the sorptivity’,Building Envir. 16 (1981) 201–207

    Article  Google Scholar 

  16. RILEM, ‘CPC 11.1 Absorption of water by immersion; CPC 11.2 Absorption of water by capillarity’,Mater. Struct. 7 (1974) 291–297.

    Google Scholar 

  17. Chen, C.-N. and Hoult, D. I., ‘Biomedical Magnetic Resonance Imaging Technology’ (Hilger, Bristol, UK, 1989).

    Google Scholar 

  18. Edelstein, W. A., Hutchison, J. M. S., Johnson, G. and Redpath, T., “Spin-warp NMR imaging and application to human whole-body imaging”,Phys. Med. Biol. 25 (1980) 751–756.

    Article  Google Scholar 

  19. Honeyborne, D. B., ‘The Building Limestones of France’ (HMSO, London, 1982).

    Google Scholar 

  20. Brutsaert, W., ‘The concise formulation of diffusive sorption of water in a dry soil’,Water Resources Res. 12 (1976) 1118–1124.

    Google Scholar 

  21. Idem, ‘Universal constants for scaling the exponential soil water diffusivity?’,ibid. 15 (1979) 481–483.

    Google Scholar 

  22. Kalimeris, A. N. and Hall, C., ‘Absorption and desorption of water by porous building materials’, in ‘Materials Science and Restoration’, edited by F. H. Wittmann (Lack und Chemie, Stuttgart, 1983).

    Google Scholar 

  23. Kalimeris, A. N., ‘Water flow processes in porous building materials’, PhD thesis, University of Manchester (1984).

  24. Wilson, M. A., Hoff, W. D. and Hall, C., ‘Water movement in porous building materials—X. Absorption from a small cylindrical cavity’,Building Envir. 26 (1991) 143–152.

    Article  Google Scholar 

  25. Guillot, G., Trokiner, A., Darasse, L., Dupas, A., Ferdossi, F., Kassab, G., Hulin, J.-P., Rigord, P. and Saint-Jalmes, H., ‘NMR imaging applied to various studies of porous media’,Magn. Reson. Imaging 9 (1991) 821–825.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpenter, T.A., Davies, E.S., Hall, C. et al. Capillary water migration in rock: process and material properties examined by NMR imaging. Materials and Structures 26, 286–292 (1993). https://doi.org/10.1007/BF02472950

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02472950

Keywords

Navigation