Skip to main content
Log in

Improved prediction model for time-dependent deformations of concrete: Part 4—Temperature effects

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This Part presents a refinement of the BP model for the effects of temperature on the basic creep and drying creep of concrete. The temperature effect on basic creep is introduced through two different activation energies, one for the effect of temperature increase on the rate of hydration, which causes a decrease of creep, and one for the effect of temperature increase on the rate of creep, which causes an increase of creep. The dichotomy of these two opposing temperature influences is an essential feature, required for good agreement with test data. The greatest error in basic creep is again caused by the prediction of the material parameters from concrete composition and strength. This error can be largely eliminated by conducting limited short-time basic creep tests at different temperatures. Comparisons with 13 different data sets from the literature show a satisfactory agreement, better than that achieved with previous models, while at the same time the scope of the present model is broader. The effect of temperature on the creep of drying specimens is rather different because heating causes a moisture loss from unsealed specimens. The paper presents prediction formulae which modify those for drying creep at room temperature on the basis of the activation energy concept and take into account the effect of heating on the moisture loss. Comparisons with the limited test data that exist show satisfactory agreement. No additional material parameters depending on concrete composition and strength are introduced for drying creep.

Resume

Dans ce volet, on présente un modèle BP perfectionné pour les effets de la température sur le fluage de base et le fluage au séchage du béton. L'effet de température sur le fluage de base se produit par l'intermédiaire de deux énergies d'activation différentes, une pour l'effet de l'accroissement de la température sur la vitesse de l'hydratation, qui cause une diminution du fluage, et l'autre pour l'effet de l'accroissement de la température sur la vitesse du fluage, qui cause un accroissement du fluage.

L'opposition de ces deux effets de la température constitue une caractéristique nécessaire pour une bonne concordance avec les données d'essai. L'erreur la plus importante dans le fluage de base reste due à la prédiction des paramètres du matériau à partir de la composition et de la résistance du béton, erreur qui peut être éliminée en effectuant des essais limités de fluage de base à court terme à des températures différentes.

Des comparaisons avec 13 séries d'essai différentes sélectionnées dans la littérature montrent une concordance satisfaisante, supérieure à celle obtenue avec les modèles précédents. Cependant, en même temps, le champ d'application de ce modèle est plus large. L'effet de la température sur le fluage des éprouvettes en cours de séchage est assez différent car le chauffage entraîne une perte d'humidité dans les éprouvettes à l'air libre.

On présente ici des formules de prédiction qui modifient celles utilisées pour le fluage en séchage à température ambiante sur la base du concept d'activation de l'énergie, et qui prennent en compte l'effet du chauffage sur la perte d'humidité. Des comparaisons avec les données d'essai limitées dont on dispose montrent une concordance satisfaisante. On n'a pas introduit d'autres paramètres du matériau en relation avec le comportement et la résistance du béton pour le fluage au séchage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bažant, Z. P. and Panula, L., ‘Practical prediction of time-dependent deformations of concrete’. Part I and II:Mater. Struct. 11(65) (1978) 307–328. Parts III and IV:ibid. Mater Struct. 11(66) (1978) 415–434. Parts V and VI:ibid. Mater Struct. 12(69) (1979) 169–183.

    Google Scholar 

  2. Bažant, Z. P., Kim, J.-K. and Panula, L., ‘Improved prediction model for time-dependent deformations of concrete: Part 1—Shrinkage’ ibid.Mater. Struct. 24 (1991) 327–345.

    Google Scholar 

  3. Bažant, Z. P. and Kim, J.-K., ‘Improved prediction model for time-dependent deformations of concrete: Part 2—Basic creep’ —ibid.24 (1991) 409–421.

    Article  Google Scholar 

  4. Idem ‘Improved prediction model for time-dependent deformations of concrete: Part 3—Creep at drying’, —ibid.25 (1992) 21–28.

    Article  Google Scholar 

  5. Bažant, Z. P., ‘Material modes for structural creep analysis’, in ‘Mathematical Modeling of Creep and Shrinkage of Concrete’, edited by Z. P. Bažant (Wiley, Chichester, 1988) pp. 99–215.

    Google Scholar 

  6. Maréchal, J. C., ‘Fluage du béton en fonction de la température’,Ann. Inst. Techn. Bâtiment Trav. Pub. 23(266) (1970) 13–24.

    Google Scholar 

  7. Bažant, Z. P., ‘Theory of creep and shrinkage in concrete structures: a precis of recent developments’,Mechanics Today 2 (1975) 1–93.

    Google Scholar 

  8. Bažant, Z. P. and Wu, S. T., ‘Thermoviscoelasticity of aging concrete’,J. Engnr. Mech. ASCE 100(EM3) (June 1972) 575–597.

    Google Scholar 

  9. Browne, R. D., ‘Properties of concrete in reactor vessels’, in Proceedings of Conference on Prestressed Concrete Pressure Vessels, group C (Institution of Civil Engineers, London, 1967) pp. 11–31.

    Google Scholar 

  10. Arthanari, S. and Yu, C. W., ‘Creep of concrete under uniaxial and biaxial stresses at elevated temperatures’,Mag. Concr. Res. 19(60) (1967) 149–155.

    Google Scholar 

  11. Da Silveira, A. and Florentino, C., ‘Influence of temperature on creep of mass concrete’, in ‘Temperature and Concrete’, ACI Special Publication SP-25 (American Concrete Institute, Detroit, 1971) pp. 173–189.

    Google Scholar 

  12. Hannant, D. J., ‘Strain behaviour of concrete up to 95°C under compressive stresses’, in Proceedings of Conference on Prestressed Concrete Pressure Vessels, group C (Institution of Civil Engineers, London, 1967) pp. 57–71.

    Google Scholar 

  13. England, G. and Ross, A. D., ‘Reinforced concrete under thermal gradients’,Mag. Concr. Res. 14(4) (1962) 5–12.

    Google Scholar 

  14. Johansen, R. and Best, H., ‘Creep of concrete with an without ice in the system’,Bull. RILEM 16 (September 1962) 47–57.

    Google Scholar 

  15. Seki, S. and Kawasumi, M., ‘Creep of concrete at elevated temperatures’, in ‘Concrete of Nuclear Reactors’ Vol. I, ACI Special Publication SP-34 (American Concrete Institute, Detroit, 1972) pp. 591–638.

    Google Scholar 

  16. McDonald, J. E., ‘Time-dependent deformation of concrete under multiaxial stress conditions’, Technical Report C-75-4 (Concrete Laboratory, US Army Engineering Waterways Experiment Station, Vicksburg, Miss., 1975).

    Google Scholar 

  17. Kommendant, G. J., Polivka, M. and Pirtz, D., ‘Study of concrete properties for prestressed concrete reactor vessels, final report—II, Creep and strength characteristics of concrete at elevated temperatures’, Report No. UCSESM 76-3 to General Atomic Company (Department of Civil Engineering, University of California, Berkeley, 1976).

    Google Scholar 

  18. Nasser, K. W. and Neville, A. M., ‘Creep of concrete at elevated temperatures’,ACI J 62 (December 1965) 1567–1579.

    Google Scholar 

  19. Idem, ‘Creep of old concrete at normal and elevated temperatures’, —ibid.64 (February 1967) 97–103.

    Google Scholar 

  20. York, G. P., Kennedy, T. W. and Perry, E. S., ‘Experimental investigation of creep in concrete subjected to multiaxial compressive stresses and elevated temperatures’, Research Report 2864-2 to Oak Ridge National Laboratory (Department of Civil Engineering, University of Texas, Austin, June 1970); see also ‘Concrete for Nuclear Reactors’, American Concrete Institute Special Publication No. 34 (1972) pp. 647–700.

    Google Scholar 

  21. Zielinski, J. L. and Sadowski, A., ‘The influence of moisture content on the creep of concrete at elevated temperatures’, in Proceedings of 2nd International Conference on Structural Mechanics in Reactor Technology, edited by T. A. Jaeger (Commission of European Communities, Berlin, 1973) pp. 1–8.

    Google Scholar 

  22. Gross, H., ‘On high-temperature creep of concrete’,ibid. 1973) Paper H6/5.

    Google Scholar 

  23. Hickey, K. B., ‘Creep, strength, and elasticity of concrete at elevated temperatures’, Report No. C-1257, Concrete and Structural Branch, Division of Research, United States Department of the Interior (Bureau of Reclamation, Denver, Colorado, 1967).

    Google Scholar 

  24. Maréchal, J. C., ‘Variations in the modulus of elasticity and Poisson's ratio with temperature’, in ‘Concrete for nuclear reactors’, Vol. I, ACI Special Publication SP-34 (American Concrete Institute, Detroit, 1972) pp. 495–503.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bažant, Z.P., Kim, JK. Improved prediction model for time-dependent deformations of concrete: Part 4—Temperature effects. Materials and Structures 25, 84–94 (1992). https://doi.org/10.1007/BF02472461

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02472461

Keywords

Navigation