Skip to main content
Log in

Electric field induced in a spherical volume conductor from arbitrary coils: application to magnetic stimulation and MEG

  • Biomedical Engineering
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A mathematical method is presented that allows fast and simple computation of the electric field and current density induced inside a homogeneous spherical volume conductor by current flowing in a coil. The total electric field inside the sphere is computed entirely from a set of line integrals performed along the coil current path. Coils of any closed shape are easily accommodated by the method. The technique can be applied to magnetic brain stimulation and to magnetoencephalography. For magnetic brain stimulation, the total electric field anywhere inside the head can be easily computed for any coil shape and placement. The reciprocity theorem may be applied so that the electric field represents the lead field of a magnetometer. The finite coil area and gradiometer loop spacing can be precisely accounted for without any surface integration by using this method. The theory shows that the steady-state, radially oriented induced electric field is zero everywhere inside the sphere for ramping coil current and highly attenuated for sinusoidal coil current. This allows the model to be extended to concentric spheres which have different electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M. andStegun, I. A. (1964)Handbook of mathematical functions. Dover Publications, New York.

    MATH  Google Scholar 

  • Amassian, V. E., Cracco, R. Q., andMaccabee, P. J. (1989) Focal stimulation of human cerebral cortex with the magnetic coil: a comparison with electrical stimulation.Electroenceph. Clin. Neurophysiol.,74, 401–416.

    Article  Google Scholar 

  • Arfken, G. (1985)Mathematical methods for physicists. Academic Press. Orlando, Florida.

    Google Scholar 

  • Barker, A. T., Freeston, I. L., Jalinous, R. andJarratt, J. A. (1987) Magnetic stimulation of the human brain and peripheral nervous system: an introduction and the results of an initial clinical evaluation.Neurosurg.,20, 100–109.

    Google Scholar 

  • Branston, N. M. andTofts, P. S. (1991) Analysis of the distribution of currents induced by a changing magnetic field in a volume conductor.Phys. in Med. & Biol.,36, 161–168.

    Article  Google Scholar 

  • Cohen, D., Cuffin, B. N., Yunokuchi, K., Maniewski, R., Purcell, C., Cosgrove, G. R., Ives, J., Kennedy, J. G. andSchomer, D. L. (1990) MEG versus EEG localization test using implanted sources in the human brain.Ann. Neurol.28, 811–817.

    Article  Google Scholar 

  • Cohen, D. andCuffin, B. N. (1991) Developing a more focal magnetic stimulator. Part I: Some basic principles.J. Clin. Neurophysiol.,8, 102–111.

    Google Scholar 

  • Cohen, L. G., Roth, B. J., Nilsson, J., Dang, N., Panizza, M., Bandinelli, S., Friauf, W. andHallett, M. (1990) Effects of coil design on delivery of focal magnetic stimulation. Technical considerations.Electroenceph. Clin. Neurophysiol.,75, 350–357.

    Article  Google Scholar 

  • Cohen, L. G., Roth, B. J., Wassermann, E. M., Topka, H., Fuhr, P., Schultz, J. andHallett, M. (1991) Magnetic stimulation of the human cerebral cortex, an indicator of reorganization in motor pathways in certain pathological conditions.J. Clin. Neurophys.,8, 56–65.

    Article  Google Scholar 

  • Cuffin, B. N. andCohen, D. (1977) Magnetic fields of a dipole in special volume conductor shapes.IEEE Trans.,BME-24, 372–381.

    Google Scholar 

  • Cuffin, B. N. andCohen, D. (1983) Effects of detector coil size and configuration on measurements of the magnetoencephalogram.J. Appl. Phys.,54, 3589–3594.

    Article  Google Scholar 

  • Ioannides, A. A. andSwithenby, S. J. (1987) An efficient magnetic flux integration method for bounded current sources.Ibid.,61, 4925–4927.

    Article  Google Scholar 

  • Jackson, J. D. (1975)Classical electrodynamics. John Wiley & Sons, New York.

    MATH  Google Scholar 

  • Meyer, B. U., Britton, T. C., Kloten, H., Steinmetz, H. andBenecke, R. (1991) Coil placement in magnetic brain stimulation related to skull and brain anatomy.Electroenceph. Clin. Neurophysiol.,81, 38–46.

    Article  Google Scholar 

  • Plonsey, R. (1972) Capability and limitations of electrocardiography and magnetocardiography.IEEE Trans.,BME-19, 239–244.

    Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky, S. A. andVetterling, W. T. (1986)Numerical recipes. Cambridge University Press, New York.

    Google Scholar 

  • Reilly, J. P. (1989) Peripheral nerve stimulation by induced electric currents: exposure to time-varying magnetic fields.Med. & Biol. Eng. & Comput.,27, 101–110.

    Google Scholar 

  • Roth, B. J. andBasser, P. J. (1990) A model of the stimulation of a nerve fiber by electromagnetic induction.IEEE Trans.,BME-37, 588–597.

    Google Scholar 

  • Roth, B. J., Saypol, J. M., Hallett, M. andCohen, L. G. (1991) A theoretical calculation of the electric field induced in the cortex during magnetic stimulation.Electroenceph. Clin. Neurophysiol.,81, 47–56.

    Article  Google Scholar 

  • Singh, S., Richards, W. F., Zinecker, J. R. andWilton, D. R. (1990) Accelerating the convergence of series representing the free space periodic Green's function.IEEE Trans.,AP-38, 1958–1962.

    Article  Google Scholar 

  • Stoy, R. D., Foster, K. R. andSchwan, H. P. (1982) Dielectric properties of mammalian tissues from 0.1 to 100 MHz: a summary of recent data.Phys. in Med. & Biol.,27, 501–513.

    Article  Google Scholar 

  • Tofts, P. S. (1990) The distribution of induced currents in magnetic stimulation of the nervous system.Ibid.,35, 1119–1128.

    Article  Google Scholar 

  • Ueno, S., Tashiro, T. andHarada, K. (1988) Localized stimulation of neural tissues in the brain by means of a paired configuration of time-varying magnetic fields.J. Appl. Phys.,64, 5862–5864.

    Article  Google Scholar 

  • Ueno, S., Matsuda, T. andFujiki, M. (1990) Functional mapping of the human cortex obtained by focal and vectorial magnetic stimulation of the brain.IEEE Trans.,MAG-26, 1539–1544.

    Google Scholar 

  • Williamson, S. J. andKaufman, L. (1984) Frontiers in the new science of biomagnetism. InBiomagnetism: applications & theory.Weinberg, H., Stroink, G. andKatila, T. (Eds.), Pergamon Press, New York, 471–490.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eaton, H. Electric field induced in a spherical volume conductor from arbitrary coils: application to magnetic stimulation and MEG. Med. Biol. Eng. Comput. 30, 433–440 (1992). https://doi.org/10.1007/BF02446182

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02446182

Keywords

Navigation