Skip to main content
Log in

Cellular cadmium distribution in the common winkle,Littorina littorea (L.) determined by X-ray microprobe analysis and histochemistry

  • Published:
Histochemistry Aims and scope Submit manuscript

Summary

Various tissues of common winkles,Littorina littorea (L.), experimentally exposed to cadmium (Cd) chloride were examined using light and electron microscopy and their elemental composition determined by X-ray microanalysis and histochemistry. Membrane granules in gill epithelial cells with paddle cilia contain carbonates, phosphates and sulphides associated with different cations in different types of granules. Traces of Cd have been found only in those granules containing sulphur and iron. Nephrocytes also contain small amounts of this metal in the cytoplasm of excretory cells. X-ray microanalysis reveals that concretions of basophilic cells are minor sites for Cd sequestration while BTAN-ASSG stain for unbound Cd indicates that most of the Cd is located within the lysosomes of digestive cells in association with proteins. Low amounts of the metal have been evidenced in the granules of epithelial mantle cells rich in sulphur. The results also indicate that hemocytes contain granules of calcium phosphate and iron sulphide. Cd is also associated to sulphur rather than to phosphate. These hemocytes may act as Cd carrier from gills to kidney and digestive gland. A hypothetical pathway for Cd accumulation and detoxification is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abolins-Krogins A (1972) The tubular endoplasmic reticulum in the amoebocytes of the shell-regenerating snail,Helix pomatia (L.). Z Zellforsch 128: 58–68

    Article  Google Scholar 

  • Ballan-Dufrancais C, Jeantet AY, Feghalli C, Halpern S (1985) Physiological features of heavy metal storage in bivalve digestive cells and amoebocytes: EPMA and factor analysis of correspondences. Biol Cell 53: 283–292

    CAS  Google Scholar 

  • Bryan GW, Langston WJ, Hummerstone LG, Burt GR (1985) A guide to the assessment of heavy metal contamination in estuaries using biological indicators. Mar Biol Ass UK Occassional Publ 4: 92 pp

  • Cajaraville MP, Marigómez JA, Angulo E (1988) Light and electron microscopic study on the gills ofLittorina littorea (Gastropoda, Prosobranchia). 10th Int. Malacol. Congr. (Tübingen, FRG)

  • Carpene E, Georgy SG (1981) Absorption of cadmium by gills ofMytilus edulis (L.). Mol Physiol 1: 23–34

    CAS  Google Scholar 

  • Castino F, Bussolati G (1974) Thiosulphation for the histochemical demonstration of protein-bound sulphydril and disulphide groups. Histochemistry 39: 93–96

    Article  PubMed  CAS  Google Scholar 

  • Chandler JA (1977) X-ray microanalysis in the electron microscope. In: Glauert AM (ed) Practical methods in electron microscopy, vol. 5, part II. North-Holland, Amsterdam, p 327–547

    Google Scholar 

  • Cheng TC (1988) In vivo effects of heavy metals on cellular defense mechanisms of Crassostrea virginica: total and differential cell counts. J Invertebr Pathol 51: 207–214

    Article  CAS  Google Scholar 

  • Fournie J, Chétail M (1982) Accumulation calcique au niveau cellulaire chez les mollusques. Malacologia 22: 265–284

    CAS  Google Scholar 

  • Fowler BA (1987) Intracellular compartmentation of metals in aquatic organisms: roles in mechanisms of cell injury. Environ Health Perspect 71: 121–128

    PubMed  CAS  Google Scholar 

  • Fowler BA, Wolte DA, Hettler WF (1975) Mercury and iron uptake by cytosomes in mantle epithelial cells of quahog clams (Mercenaria mercenaria) exposed to mercury. J Fish Res Bd Can 32: 1767–1775

    CAS  Google Scholar 

  • George SG (1984) Intracellular control of Cd concentrations in marine mussels. Mar Environ Res 14: 465–468

    Article  Google Scholar 

  • George SG, Pirie BJS (1979) The occurrence of Cd in subcellular particles in the kidney of the marine musselMytilus edulis, exposed to Cd. Biochim Biophys Acta 580: 234–244

    PubMed  CAS  Google Scholar 

  • Glauert AM (1986) Fixation, dehydration and embedding of biological specimens. Elsevier North-Holland, New York, p 44–48

    Google Scholar 

  • Hemelraad J, Holmerda DA, Teerds KJ, Herwig HJ, Zandee DI (1986) Cadmium kinetics in freshwater clams II. A comparative study of cadmium uptake and cellular distribution in the unionidaeAnodonta zygnea, Anodonta anatina andUmio pictorum. Arch Environ Contam Toxicol 15: 9–21

    Article  PubMed  CAS  Google Scholar 

  • Ireland MP (1982) Zinc uptake inLittorina littorea. J Moll Stud 49: 79–80

    Google Scholar 

  • Janssen HH, Ertelt-Jansen V (1983) Cytochemical demonstration of cadmium and iron in experimental blue mussel (Mytilus edulis). Mikroskopie (Wien) 40: 329–340

    CAS  Google Scholar 

  • Langston WJ, Zhou M (1986) Evaluation of the significance of metal-binding proteins in the gastropodLittorina littorea. Mar Biol 2: 505–515

    Article  Google Scholar 

  • Lillie RD (1965) Histopathologic technic and practical histochemistry. McGraw-Hill, New York, p 429–453

    Google Scholar 

  • Marigómez JA (1989) Aportaciones cito-histologicas a la evaluación ecotoxicologica de niveles subletales de cadmio en el medio marino: estudios de laboratorio en el gasterópodo prosobranquioLittorina littorea (L.). Ph. D Thesis, Science Faculty, University of the Basque Country, Bilbao (Spain), p 430

    Google Scholar 

  • Marigómez JA, Cajaraville MP, Angulo E, Moya J (1990) Ultrastructural alterations in the renal epithelium of Cadmium treatedLittorina littorea. Arch Environ Contam Toxicol 19 (in press)

  • Marigómez JA, Ireland MP (1989) Accumulation, distribution and loss of cadmium in the marine prosobranchLittorina littorea (L.). Sci Total Environ 78: 1–12

    Article  PubMed  Google Scholar 

  • Marigómez JA, Ireland MP (1990) A laboratory study of cadmium exposure inLittorina littorea in relation to environmental cadmium and exposure time. Sci Total Environ 90: 75–87

    Article  Google Scholar 

  • Marigómez JA, Martín LM, Sáez V (1987) Lethal effects of Cd inLittorina littorea (L.) (Gastropoda, Prosobranchia). Cuad Marisq Publ Téc 9: 181–189

    Google Scholar 

  • Marigómez JA, Vega MM, Cajaraville MP, Angulo E (1990) Quantitative responses of the digestive lysosomal system of winkles to sublethal concentrations of cadmium. Cell Mol Biol 35: 555–562

    Google Scholar 

  • Marshall AT, Talbot T (1979) Accumulation of cadmium and lead in the gills ofMytilus edulis; X-ray microanalysis and chemical analysis. Chem Biol Interact 27: 111–123

    Article  PubMed  CAS  Google Scholar 

  • Martoja R, martoja-Pierson M (1970) Técnicas de histología animal. Toray-Masson, Barcelona, p 350

    Google Scholar 

  • Martoja M, Truchet M, Bougnegneau JM (1984) Accumulation naturelle de cadmium chezMurex trunculus etMurex brandaris (Prosobranches Néogastropoda) localisation histologique. CR Acad Sci Paris 298(III): 461–466

    CAS  Google Scholar 

  • Martoja M, Tue VT, Elkain B (1980) Bioaccumulation du cuivre chezLittorina littorea (L) (Gastéropode, Prosobranchic): signification physiologique et écologique. J Exp Mar Biol Ecol 43: 251–270

    Article  CAS  Google Scholar 

  • Mason AZ (1983) The uptake, accumulation and excretion of metals by the marine prosobranch gastropod molluscLittorina littorea (L.). PhD Thesis, University of Wales, Bangor (Wales), p 575

    Google Scholar 

  • Mason AZ, Nott JA (1981) The role of intracellular biomineralized granules in the regulation and detoxification of metals in gastropods, with special reference to the marine prosobranchLittorina littorea. Aquat Toxicol 1: 239–256

    Article  CAS  Google Scholar 

  • Mason AZ, Simkiss K, Ryan KP (1984) The ultrastructural localization of metals in specimens ofLittorina littorea collected from clean and polluted areas. J Mar Biol Assoc UK 64: 699–720

    CAS  Google Scholar 

  • Morgan AJ, Morris B (1982) The accumulation and intracellular compartmentation of cadmium, lead, zinc and calcium in two earthworm species (Dendrobaena rubida andLumbricus rubellus) living in highly contaminated soil. Histochemistry 75: 269–285

    Article  PubMed  CAS  Google Scholar 

  • Nott JA, Langston WJ (1989) Cadmium and the phosphate granules inLittorina littorea. J Mar Biol Assoc UK 69: 219–227

    CAS  Google Scholar 

  • Phillips DJH (1980) Quantitative aquatic biological indicators: their use to monitor trace metal and organochlorine pollution. Appl Sci Publ, London, p 488

    Google Scholar 

  • Pynnönen K, Holwerda DA, Zandee DI (1987) Occurrence of calcium concretions in various tissues of freshwater mussels, and their capacity for cadmium sequestration. Aquat Toxicol 10: 101–114

    Article  Google Scholar 

  • Recio A, Marigómez JA, Angulo E, Moya J (1988) Zinc treatment of the digestive gland of the slugArion ater L. 1. Cellular distribution of zinc and calcium. Bull Environ Contam Toxicol 41: 858–864

    Article  PubMed  CAS  Google Scholar 

  • Robinson WE, Ryan DK (1988) Transport of cadmium and other metals in the blood of the bivalve mollusc,Mercenaria mercenaria. Mar Biol 97: 101–109

    Article  CAS  Google Scholar 

  • Scholz N (1980) Accumulation, loss and molecular distribution of cadmium inMytilus edulis. Helgol Meeresunters 33: 68–78

    Article  Google Scholar 

  • Sen Gupta A (1977) Observations on the gill ofViviparus bengalensis in relation to calcium uptake and storage. Acta Zool (Stockh) 58: 129–133

    Article  Google Scholar 

  • Simkiss K (1983) Lipid solubility of heavy metals in saline solutions. J Mar Biol Assoc UK 63: 1–7

    Article  CAS  Google Scholar 

  • Simkiss K, Mason AZ (1984) Cellular responses of molluscan tissues to environmental metals. Mar Environ Res 14: 103–118

    Article  CAS  Google Scholar 

  • Sullivan PA, Robinson WE, Morse MP (1988) Subcellular distribution of metals within the kidney of the bivalveMercenaria mercenaria (L.). Comp Biochem Physiol 91C: 589–595

    CAS  Google Scholar 

  • Sumi Y, Muraki T, Suzuki T (1982) Histochemical staining of cadmium benzothiazolylazonaphthol derivatives. Histochemistry 73: 481–486

    Article  PubMed  CAS  Google Scholar 

  • Sumi Y, Suzuki T, Yamamura M, Hatakeyama S, Sugaya Y, Suzuki KT (1984) Histochemical staining of cadmium taken up by the midge larvaChironomus yoshimatsui (Diptera, Chironomidae). Comp Biochem Physiol 79A: 353–357

    CAS  Google Scholar 

  • Thomson JD, Pirie BJS, George SG (1985) Cellular metal distribution in the Pacific oyster,Crassostrea gigas (Thun) determined by quantitative x-ray microprobe analysis. J Exp Mar Biol Ecol 85: 37–45

    Article  CAS  Google Scholar 

  • Viarengo A, Pertica M, Mancinelli G, Palmero S, Zanicchi G, Orunesu M (1981) Synthesis of Cu-binding proteins in different tissues of mussels exposed to the metal. Mar Pollut Bull 12: 347–350

    Article  CAS  Google Scholar 

  • Wilbur KM (1972) Shell formation in mollusks. In: Florkin M, Scheer BT (eds) Chemical zoology, vol. VII. Academic Press, London, pp 103–145

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marigómez, J.A., Cajaraville, M.P. & Angulo, E. Cellular cadmium distribution in the common winkle,Littorina littorea (L.) determined by X-ray microprobe analysis and histochemistry. Histochemistry 94, 191–199 (1990). https://doi.org/10.1007/BF02440187

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02440187

Keywords

Navigation