Skip to main content
Log in

A multi-limit formulation for the equilibrium depth of a stably stratified boundary layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Currently no expression for the equilibrium depth of the turbulent stably-stratified boundary layer is available that accounts for the combined effects of rotation, surface buoyancy flux and static stability in the free flow. Various expressions proposed to date are reviewed in the light of what is meant by the stable boundary layer. Two major definitions are thoroughly discussed. The first emphasises turbulence and specifies the boundary layer as a continuously and vigorously turbulent layer adjacent to the surface. The second specifies the boundary layer in terms of the mean velocity profile, e.g. by the proximity of the actual velocity to the geostrophic velocity. It is shown that the expressions based on the second definition are relevant to the Ekman layer and portray the depth of the turbulence in the intermediate regimes, when the effects of static stability and rotation essentially interfere. Limiting asymptotic regimes dominated by either stratification or rotation are examined using the energy considerations. As a result, a simple equation for the depth of the equilibrium stable boundary layer is developed. It is valid throughout the range of stability conditions and remains in force in the limits of a perfectly neutral layer subjected to rotation and a rotation-free boundary layer dominated by surface buoyancy flux or stable density stratification at its outer edge. Dimensionless coefficients are estimated using data from observations and large-eddy simulations. Well-known and widely used formulae proposed earlier by Zilitinkevich and by Pollard, Rhines and Thompson are shown to be characteristic of the above interference regimes, when the effects of rotation and static stability (due to either surface buoyancy flux, or stratification at the outer edge of the boundary layer) are roughly equally important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • André, J. C. and Mahrt, L.: 1982, ‘The Nocturnal Surface Inversion and Influence of Clear-Air Radiative Cooling’,J. Atmos. Sci. 39, 864–878.

    Article  Google Scholar 

  • Andrén, A.: 1995, ‘The Structure of Stably Stratified Atmospheric Boundary Layers. A Large-Eddy Simulation Study’,Quart. J. Roy. Meteorol. Soc. 121, 961–985.

    Article  Google Scholar 

  • Andrén, A. and Moeng, C.-H.: 1993, ‘Single-Point Closures in a Neutrally Stratified Boundary Layer’,J. Atmos. Sci. 50, 3366–3379.

    Article  Google Scholar 

  • Brost, R. A. and Wyngaard, J. C.: 1978, ‘A Model Study of the Stably Stratified Planetary Boundary Layer’,J. Atmos. Sci. 35, 1427–1440.

    Article  Google Scholar 

  • Brown, A. R., Derbyshire, S. H., and Mason, P. J.: 1994, ‘Large-Eddy Simulation of Stable Atmospheric Boundary Layers with a Revised Stochastic Subgrid Model’,Quart. J. Roy. Meteorol. Soc. 120, 1485–1512.

    Article  Google Scholar 

  • Businger, J. A. and Arya, S. P. S.: 1974, ‘Heights of The Mixed Layer in the Stably Stratified Planetary Boundary Layer’,Advances in Geophysics, Vol. 18A, Academic Press, pp. 73–92.

  • Byun, D. W.: 1991, ‘Determination of Similarity Functions of the Resistance Laws for the Planetary Boundary Layer Using Surface-Layer Similarity Functions’,Boundary-Layer Meteorol. 57, 17–48.

    Article  Google Scholar 

  • Caldwell, D. R., Van Atta, C. W., and Helland, K. N.: 1972, ‘A Laboratory Study of the Turbulent Ekman Layers’,Geophys. Fluid Dyn. 3, 125–160.

    Google Scholar 

  • Carruthers, D. J. and Hunt, J. C. R.: 1986, ‘Velocity Fluctuations Near an Interface between a Turbulent Region and a Stably Stratified Layer’,J. Fluid Mech. 165, 475–501.

    Article  Google Scholar 

  • Caughey, S. J.: 1982, ‘Observed Characteristics of the Atmospheric Boundary Layer’, in F. T. M. Nieuwstadt and H. van Dop (eds.),Atmospheric Turbulence and Air Pollution Modelling, D. Reidel, Dordrecht, pp. 107–158.

    Google Scholar 

  • Caughey, S. J., Wyngaard, J. C., and Kaimal, J. C.: 1979, ‘Turbulence in the Evolving Stable Layer’,J. Atmos. Sci. 36, 1041–1052.

    Google Scholar 

  • Clarke, R. H., Dyer, A. J., Brook, R. R., Reid, D. G., and Troup, A. J.: 1971, ‘The Wangara Experiment: Boundary Layer Data’;. Techn. Pap. No. 19, CSIRO, Division of Meteorological Physics, Aspendale, Australia. 362 pp.

    Google Scholar 

  • Deardorff, J. W.: 1972, ‘Parameterization of the Planetary Boundary Layer for Use in General Circulation Models’,Mon. Wea. Rev. 100, 93–106.

    Google Scholar 

  • Derbyshire, S. H.: 1990, ‘Nieuwstadt’s Stable Boundary Layer Revisited’,Quart. J. Roy. Meteorol. Soc. 116, 127–158.

    Article  Google Scholar 

  • Derbyshire, S. H.: 1995a, ‘Stable Boundary Layers: Observations, Models and Variability. Part I: Modelling and Measurements’,Boundary-Layer Meteorol. 74, 19–54.

    Article  Google Scholar 

  • Derbyshire, S. H.: 1995b, ‘Stable Boundary Layers: Observations, Models and Variability. Part II: Data Analysis and Averaging Effects’,Boundary-Layer Meteorol. 75, 1–24.

    Article  Google Scholar 

  • Felzenbaum, A. I.: 1980, ‘Similarity Theory for the Oceanic Upper Layer’,Dokl. AN SSSR 255, 552–556.

    Google Scholar 

  • Finnigan, J. J., Einaudi, F., and Fua, D.: 1984, ‘The Interaction between an Internal Gravity Wave and Turbulence in the Stably-Stratified Nocturnal Boundary Layer’,J. Atmos. Sci. 41, 2409–2436.

    Article  Google Scholar 

  • Garratt, J. R.: 1982, ‘Observations in the Nocturnal Boundary Layer’,Boundary-Layer Meteorol. 22, 21–48.

    Article  Google Scholar 

  • Garratt, J. R. and Brost, R. A.: 1981, ‘Radiative Cooling Effects within and above the Nocturnal Boundary Layer’,J. Atmos. Sci. 38, 2730–2746.

    Article  Google Scholar 

  • Garwood, R. W.: 1977, ‘An Oceanic Mixed Layer Model Capable of Simulating Cyclic States’,J. Phys. Oceanogr. 7, 455–468.

    Article  Google Scholar 

  • Garwood, R. W., Gallacher, P. C., and Muller, P.: 1985, ‘Wind Direction and Equilibrium Mixed Layer Depth: General Theory’,J. Phys. Oceanogr. 15, 1325–1331.

    Article  Google Scholar 

  • Garwood, R. W., Muller, P., and Gallacher, P. C.: 1985, ‘Wind Direction and Equilibrium Mixed Layer Depth in the Tropical Pacific Ocean’,J. Phys. Oceanogr. 15, 1332–1338.

    Article  Google Scholar 

  • Gill, A. E.: 1967,The Turbulent Ekman Layer, Preprint, Dept. Appl. Math. Theoret. Phys., Cambridge University.

  • Grant, A. L. M.: 1994, ‘Wind Profiles in the Stable Boundary Layer, and the Effect of Low Relief’,Quart. J. Roy. Meteorol. Soc. 120, 27–46.

    Article  Google Scholar 

  • Hinze, J. O.: 1959,Turbulence, McGraw Hill Book Co., 517 pp.

  • Högström, U.: 1988, ‘Non-Dimensional Wind and Temperature Profiles in the Atmospheric Surface Layer: A Re-Evaluation’,Boundary-Layer Meteorol. 42, 55–78.

    Article  Google Scholar 

  • Joffre, S. M.: 1981,The Physics of the Mechanically Driven Atmospheric Boundary Layer as an Example of Air-Sea Ice Interactions, Report No. 20, Dept. Meteorology, University of Helsinki, 75 pp.

  • Kantha, L. H.: 1977, ‘Note on the Role of Internal Waves in Thermocline Erosion’, in E. B. Kraus (ed.),Modelling and Prediction of the Upper Layers of the Ocean, Pergamon Press, Oxford, pp. 173–177.

    Google Scholar 

  • Kazanski, A. B., and Monin, A. S.: 1960, ‘On Turbulent Regime above the Atmospheric Surface Layer’,Izv. AN SSSR. Ser. geofiz., No. 1, 165-168.

  • Kitaigorodskii, S. A.: 1960, ‘On the Computation of the Thickness of the Wind-Mixing Layer in the Ocean’,Izv. AN SSSR. Ser. geofiz., No. 3, 425–431.

  • Kitaigorodskii, S. A.: 1970,The Physics of Air-Sea Interaction, Gidrometeoizdat, Leningrad, 284 pp. (In Russian. English translation: Israel Progr. Scient. Translation, Jerusalem, 1973, 236 pp.)

    Google Scholar 

  • Kitaigorodskii, S. A.: 1988, ‘A Note on Similarity Theory for Atmospheric Boundary Layers in the Presence of Background Stable Stratification’,Tellus 40A, 434–438.

    Google Scholar 

  • Kitaigorodskii, S. A.: 1990, ‘A Note on the Variability of the Heights of Tidal Benthic Boundary Layers’,Geophysica 26, 37–44.

    Google Scholar 

  • Kitaigorodskii, S. A.: 1992, ‘The Location of Thermal Shelf Fronts and the Variability of the Heights of Tidal Benthic Boundary Layers’,Tellus 44A, 425–433.

    Google Scholar 

  • Kitaigorodskii, S. A. and Joffre, S. M.: 1988, ‘In Search of Simple Scaling for the Heights of the Stratified Atmospheric Boundary Layer’,Tellus 40A, 419–433.

    Google Scholar 

  • Kraus, E. B. and Turner, J. C.: 1967, ‘A One-Dimensional Model of the Seasonal Thermocline: Part II. The General Theory and its Consequences’,Tellus 19, 98–106.

    Google Scholar 

  • Lenschow, D. H., Li, X. S., Zhu, C. J., and Stankov, B. B.: 1988a, ‘The Stably Stratified Boundary Layer over the Great Plains. I. Mean and Turbulence Structure’,Boundary-Layer Meteorol. 42, 95–121.

    Article  Google Scholar 

  • Lenschow, D. H., Zhang, S. F., and Stankov, B. B.: 1988b, ‘The Stably Stratified Boundary Layer over the Great Plains. II. Horizontal Variations and Spectra’,Boundary-Layer Meteorol. 42, 123–135.

    Article  Google Scholar 

  • Long, R. R.: 1974, ‘Mean Stresses and Velocities in the Neutral, Barotropic Planetary Boundary Layer’,Boundary-Layer Meteorol. 7, 475–487.

    Article  Google Scholar 

  • Mahrt, L.: 1981, ‘Modelling the Depth of the Stable Boundary-Layer’,Boundary-Layer Meteorol. 21, 3–19.

    Article  Google Scholar 

  • Mahrt, L., Heald, R. C., Lenschow, D. H., Stankov, B. B., and Troen, I.: 1979, ‘An Observational Study of the Structure of the Nocturnal Boundary Layer’,Boundary-Layer Meteorol. 17, 247–264.

    Article  Google Scholar 

  • Mason, P. J. and Derbyshire, S. H.: 1990, ‘Large-Eddy Simulation of the Stably Stratified Atmospheric Boundary Layer’,Boundary-Layer Meteorol. 53, 117–162.

    Article  Google Scholar 

  • Mason, P. J. and Thomson, D. J.: 1987, ‘Large-Eddy Simulations of the Neutral-Static-Stability Planetary Boundary Layer’,Quart. J. Roy. Meteorol. Soc. 113, 413–443.

    Article  Google Scholar 

  • Melgarejo, J. W. and Deardorff, J. W.: 1974, ‘Stability Functions for the Boundary Layer Resistance Laws Based upon Observed Boundary Layer Heights’,J. Atmos. Sci. 31, 1324–1333.

    Article  Google Scholar 

  • Melgarejo, J. W. and Deardorff, J. W.: 1975, ‘Revision to “Stability Functions for the Boundary Layer Resistance Laws Based upon Observed Boundary Layer Heights”’,J. Atmos. Sci. 32, 837–839.

    Google Scholar 

  • Monin, A. S. and Obukhov, A. M.: 1954, ‘Basic Laws of Turbulent Mixing in the Atmospheric Surface Layer’,Trudy Geofiz. Inst. Akad. Nauk SSSR,24(151), 163–187.

    Google Scholar 

  • Nappo, C. J.: 1991, ‘Sporadic Breakdowns of Stability in the PBL over Simple and Complex Terrain’,Boundary-Layer Meteorol. 54, 69–75.

    Article  Google Scholar 

  • Nappo, C. J. and Eckman, R. M.: 1995, ‘Breakdowns of the Nighttime Planetary Boundary Layer over Complex Terrain’, 21st NATO/CCMS International Technical meeting on Air Pollution Modelling and its Application, November 6–10, 1995, Baltimore, MD, USA, AMS, pp. 291–298.

    Google Scholar 

  • Nieuwstadt, F. T. M.: 1981, ‘The Steady-State Height and Resistance Laws of the Nocturnal Boundary Layer: Theory Compared with Cabauw Observations’,Boundary-Layer Meteorol. 20, 3–17.

    Article  Google Scholar 

  • Nieuwstadt, F. T. M.: 1984, ‘The Turbulent Structure of the Stable, Nocturnal Boundary Layer’,J. Atmos. Sci. 41, 2202–2216.

    Article  Google Scholar 

  • Nieuwstadt, F. T. M.: 1985, ‘A Model for the Stationary, Stable Boundary Layer’, in J. C. R. Hunt (ed.),Turbulence and Diffusion in Stable Environment, Claredon Press, Oxford, pp. 149–179.

    Google Scholar 

  • Nieuwstadt, F. T. M. and Tennekes, H.: 1981, ‘A Rate Equation for the Nocturnal Boundary-Layer Height’,J. Atmos. Sci. 38, 1418–1428.

    Article  Google Scholar 

  • Niiler, P. P.: 1975, ‘Deepening of the Wind-Mixed Layer’,J. Marine Res. 33, 405–422.

    Google Scholar 

  • Niiler, P. P. and Kraus, E. B.: 1977, ‘One-Dimensional Models of the Upper Ocean’, in E. B. Kraus (ed.),Modelling and Prediction of the Upper Layers of the Ocean, Pergamon Press, Oxford, pp. 143–172.

    Google Scholar 

  • Overland, J. E. and Davidson, K. L.: 1992, ‘Geostrophic Drag Coefficient over Sea Ice’,Tellus 44A, 54–66.

    Google Scholar 

  • Phillips, O. M.: 1977, ‘Entrainment’, in E. B. Kraus (ed.), Modelling and Prediction of the Upper Layers of the Ocean, Pergamon Press, Oxford, pp. 92–101.

    Google Scholar 

  • Pollard, R. T., Rhines, P. B. and Thompson, R. O. R. Y.: 1973, ‘The Deepening of the Wind-Mixed Layer’,Geophys. Fluid Dyn. 3, 381–404.

    Google Scholar 

  • Rahm, L. and Svensson, U.: 1989, ‘Dispersion in a Stratified Benthic Boundary Layer’,Tellus 41A, 148–161.

    Article  Google Scholar 

  • Resnyansky, Yu. D.: 1975, ‘On the Parameterization of the Integral Turbulent Energy Dissipation in the Upper Ocean Quasi-Homogeneous Layer’,Izv. AN SSSR. Fizika Atmosfery i Okeana 11, 726–733.

    Google Scholar 

  • Richards, K. J.: 1982, ‘Modeling the Benthic Boundary Layer’,J. Phys. Oceanogr. 12, 428–439.

    Article  Google Scholar 

  • Rossby, C. G. and Montgomery, R. B.: 1935, ‘The Layer of Frictional Influence in Wind and Ocean Currents’,Pap. Phys. Oceanogr. Meteorol. 3(3), 1–101. (M.I.T. and Woods Hole Oceanogr. Inst.)

    Google Scholar 

  • Stigebrandt, A.: 1985, ‘A Model of the Seasonal Pycnocline in Rotating Systems with Application to the Baltic Proper’,J. Phys. Oceanogr. 15, 1392–1404.

    Article  Google Scholar 

  • Tennekes, H.: 1982, ‘Similarity Relations, Scaling Laws and Spectral Dynamics’, in F. T. M. Nieuwstadt and H. van Dop (eds.),Atmospheric Turbulence and Air Pollution Modelling, D. Reidel, Dordrecht, pp. 37–68.

    Google Scholar 

  • Thorpe, S. A.: 1973, ‘Turbulence in Stably Stratified Fluids: A Review of Laboratory Experiments’,Boundary-Layer Meteorol. 5, 95–119.

    Article  Google Scholar 

  • Townsend, A. A.: 1966, ‘Internal Waves Produced by a Convective Layer’,J. Fluid Mech. 24, 307–319.

    Article  Google Scholar 

  • Weatherly, G. L. and Martin, P. J.: 1978, ‘On the Structure and Dynamics of the Oceanic Bottom Boundary Layer’,J. Phys. Oceanogr. 8, 557–570.

    Article  Google Scholar 

  • Wyngaard, J. C.: 1983, ‘Lectures on the Planetary Boundary Layer’, in D. K. Lilly and T. Gal-Chen (eds.),Mesoscale Meteorology — Theories, Observations and Models, NATO ASI Series, D. Reidel, Dordrecht, pp. 603–650.

    Google Scholar 

  • Wyngaard, J. C.: 1988, ‘Structure of the PBL’, in A. Venkatram and J. C. Wyngaard (eds.), Lectures on Air Pollution Modeling, Amer. Meteor. Soc., Boston, pp. 9–61.

    Google Scholar 

  • Wyngaard, J. C.: 1992, ‘Atmospheric Turbulence’,Annu. Rev. Fluid Mech. 24, 205–233.

    Article  Google Scholar 

  • Yamada, T.: 1976, ‘On the Similarity FunctionsA, B, andC of the Planetary Boundary Layer’,J. Atmos. Sci. 33, 781–793.

    Article  Google Scholar 

  • Yu, T.-W.: 1978, ‘Determining the Height of the Nocturnal Boundary Layer’,J. Appl. Meteorol. 17, 28–33.

    Article  Google Scholar 

  • Zilitinkevich, S. S.: 1972, ‘On the Determination of the Height of the Ekman Boundary Layer’,Boundary-Layer Meteorol. 3, 141–145.

    Article  Google Scholar 

  • Zilitinkevich, S. S.: 1975, ‘Resistance Laws and Prediction Equation for the Depth of the Planetary Boundary Layer’,J. Atmos. Sci. 32, 741–752.

    Article  Google Scholar 

  • Zilitinkevich, S. S.: 1989, ‘Velocity Profiles, Resistance Law and Dissipation Rate of Mean Flow Kinetic Energy in a Neutrally and Stably Stratified Planetary Boundary Layer’,Boundary-Layer Meteorol. 46, 367–387.

    Article  Google Scholar 

  • Zilitinkevich, S. S. and Mironov, D. V.: 1992, ‘Theoretical Model of the Thermocline in a Freshwater Basin’,J. Phys. Oceanogr. 22, 988–996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zilitinkevich, S., Mironov, D.V. A multi-limit formulation for the equilibrium depth of a stably stratified boundary layer. Boundary-Layer Meteorol 81, 325–351 (1996). https://doi.org/10.1007/BF02430334

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02430334

Key words

Navigation