Skip to main content
Log in

Fixation de l'azote atmosphérique et assimilation du nitrate chez le fenugrec (Trigonella foenum graecum L.) cultivé au champ

Nitrogen fixation and nitrate assimilation in field-grown fenugreek (Trigonella foenum graecum L.)

  • Published:
Plant and Soil Aims and scope Submit manuscript

Résumé

L'activité nitrogénase (réduction de l'acétylènein situ) et l'activité nitrate réductasein vivo ont été déterminées au cours du cycle végétatif du fenugrec (Trigonella foenum graecum L.) cultivé au champ. L'activité réductrice d'acétylène par g de matière sèche de nodosités et l'activité nitrate réductase par g de matière fraîche présentent un maximum en hiver quand les températures sont très faibles; à cette période ces activités exprimées par plante seraient principalement limitées par la croissance de la plante qui est alors minimale. Ensuite les 2 activités enzymatiques par plante augmentent parallèlement pendant la floraison et la plante peut ainsi bénéficier simultanément des 2 sources d'azote avec des taux d'activité importants. L'activité réductrice d'acétylène chute brusquement pendant le remplissage des gousses. Cette activité se révèle assez sensible à certains facteurs externes, en particulier la sécheresse du sol ou de l'air. D'après les mesures des rapports isotopiques naturels de l'azote, le fenugrec a fixé 48% de son azote total au cours de son cycle végétatif.

Summary

The nitrogenase activity (in situ acetylene reduction) andin vivo nitrate reductase activity were investigated in field-grown fenugreek (Trigonella foenum graecum L.) over the growing season. The acetylene reduction activity per g dry weight of nodules and the nitrate reductase activity per g fresh weight reached a maximum in winter when the temperature is very low; the main limiting factor of total plant activities was the minimal growth rate of the plant during this season. The two enzymatic, activities per plant both increased during the flowering period; the fenugreek could then benefit simultaneously of atmospheric and soil nitrogen with high levels of activity. The acetylene reduction activity decreased rapidly during the pod-filling period. This activity seemed sensitive to environmental factors such as air or soil dryness. The percentage of fixed nitrogen is estimated by measuring the natural isotopic nitrogen ratios: the fenugreek fixed 48% of its total N content during the growing season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Baccou J C, Sauvaire Y, Olle M and Petit J 1978 L'huile de fenugrec: Composition, propriétés, possibilités d'utilisation dans l'industrie des peintures et vernis. Revue Française des Corps Gras 25, 353–359.

    CAS  Google Scholar 

  2. Balandreau J and Dommergues Y 1971 Mesurein situ de l'activité nitrogénase. C. R. Acad. Sc. Paris 273, 2020–2023.

    CAS  Google Scholar 

  3. Bar-Akiva A, Sagiv J and Leshem J 1970 Nitrate reductase activity as an indicator for assessing the nitrogen requirement of grass crops. J. Sci. Food Agric. 21, 405–407.

    CAS  Google Scholar 

  4. Bardin R, Domenach A M and Chalamet A 1977 Rapports isotopiques naturels de l'azote. II. Applications à la mesure de la fixation symbiotique de l'azotein situ. Rev. Ecol. Biol. Sol. 14, 395–402.

    CAS  Google Scholar 

  5. Crafts-Brandner S J, Below F E, Harper J E and Hageman R H 1984 Effects of pod removal on metabolism and senescence of nodulating and nonnodulating soybean isolines. II Enzymes and chlorophyll. Plant Physiol. 75, 318–322.

    CAS  Google Scholar 

  6. Duke S H and Doehlert D C 1981 Root respiration nodulation, and enzyme activities in alfalfa during cold acclimatation. Crop Sci. 21, 489–495.

    CAS  Google Scholar 

  7. Duke S H, Schrader L E, Henson C A, Servaites J C, Vogelzang R D and Pendleton J W 1979 Low root temperature effects on soybean nitrogen metabolism and photosynthesis. Plant Physiol. 63, 956–962.

    CAS  Google Scholar 

  8. Franco A A, Pereira J C and Neyra C A 1979 Seasonal patterns of nitrate reductase and nitrogenase activities inPhaseolus vulgaris L. Plant Physiol. 63, 421–424.

    CAS  Google Scholar 

  9. Hardman R and Petropoulos G A 1975 The response ofTrigonella foenum graecum (fenugreek) to field inoculation withRhizobium, meliloti 2012. Planta Med. 27, 53–57.

    Google Scholar 

  10. Hardy R W F and Havelka U D 1976 Photosynthate as a major factor limiting nitrogen fixation by field-grown legumes with emphasis on soybeans. In Symbiotic Nitrogen Fixation in Plants. Ed. P S Nutman. Cambridge University Press, London, pp. 421–439.

    Google Scholar 

  11. Hardy R W F, Holsten R D, Jackson E K and Burns R C 1968 The acetylene-ethylene assay for N2-fixation: laboratory and field evaluation. Plant Physiol. 43, 1185–1205.

    CAS  Google Scholar 

  12. Harper J E 1974 Soil and symbiotic nitrogen requirements for optimum soybean production. Crop Sci. 14, 255–260.

    CAS  Google Scholar 

  13. Herridge D F and Pate J S 1977 Utilization of net photosynthate for nitrogen fixation and protein production in an annual legume. Plant Physiol. 60, 759–764.

    CAS  Google Scholar 

  14. Jaworski E G 1971 Nitrate reductase assay in intact plant tissues. Biochem. Biophys. Res. Comm. 43, 1274–1279.

    Article  CAS  PubMed  Google Scholar 

  15. Lawn R J and Brun W A 1974 Symbiotic nitrogen fixation in soybeans. II Interrelationship between carbon and nitrogen assimilation. Crop Sci. 14, 17–21.

    CAS  Google Scholar 

  16. Lawrie A C and Wheeler C T 1974 The effects of flowering and fruit formation on the supply of photosynthetic assimilates to the nodules ofPisum sativum L. in relation to the fixation of nitrogen. New Phytol. 73, 1119–1127.

    Google Scholar 

  17. Lindström K 1984 Analysis of factors affectingin situ nitrogenase (C2H2) activity ofGalega orientalis, Trifolium pratense andMedicago sativa in temperature conditions. Plant and Soil 79, 329–341.

    Article  Google Scholar 

  18. Mariotti A 1983 Atmospheric nitrogen is a reliable standard for natural15N abundance measurements. Nature 303, 685–687.

    Article  CAS  Google Scholar 

  19. Masterson C L and Murphy P M 1976 Application of the acetylene reduction technique to the study of nitrogen fixation by white clover in the field. In Recent Developments in Nitrogen Fixation. Eds. Newten, Postgage, Rodriguez-Barrueco. Academic Press, London-New York, pp. 299–316.

    Google Scholar 

  20. Miquel M, Obaton, M, Conejero G, Robin P, Salsac L, Domenach A M and Bardin R 1980 Détermination de l'activité nitrate réductase et nitrogénase chez le soja au champ. In Cinquième Colloque International sur le Contrôle de l'Alimentation des Plantes Cultivées. Castel Franco Veneto, pp. 1–10.

  21. Mølgaard P and Hardman R 1980 Boron requirement and deficiency symptoms of fenugreek (Trigonella foenum graecum) as shown in water culture experiment with inoculation of Rhizobium. J. Agric. Sci. Camb. 94, 455–460.

    Google Scholar 

  22. Nautiyal C S and Modi V V 1982 Enzymes of ammonia assimilation in root nodules ofTrigonella foenum-graecum. Phytochemistry 21, 505–507.

    Article  CAS  Google Scholar 

  23. Nautiyal C S, Chhaptar H S and Modi V V 1980 Role of some oxydative and dehydrogenase enzymes in nodules ofTrigonella foenum-graecum L. Indian J. Exp. Biol. 18, 362–364.

    CAS  Google Scholar 

  24. Nautiyal C S, Chhaptar H S and Modi V V 1983 Role of some oxidative enzymes in root nodules ofTrigonella foenum-graecum. Experientia 39, 155–156.

    Article  CAS  Google Scholar 

  25. Obaton M, Miquel M, Robin P, Conejero G, Domenach A M and Bardin R 1983 Influence du déficit hydrique sur l'activité nitrate réductase et nitrogénase chez le soja (Glycine max L. Merr. cv. Hodgson). C. R. Acad. Sci. Paris 294, 1007–1012.

    Google Scholar 

  26. Pankhurst C E and Layzell D B 1984 The effect of bacterial strain and temperature changes on the nitrogenase activity ofLotus pedunculatus root nodules. Physiol. Plant. 62, 404–409.

    CAS  Google Scholar 

  27. Pankhurst C E and Sprent J I 1976 Effects of temperature and oxygene tension of the nitrogenase and respiratory activities of turgid and water-stressed soybean and French bean root nodules. J. Exp. Bot. 27, 1–9.

    CAS  Google Scholar 

  28. Rennie R J and Kemp G A 198415N-Determined time course for N2 fixation in two cultivars of field bean. Agron. J. 76, 146–154.

    CAS  Google Scholar 

  29. Rennie R J, Dubetz S, Bole J B and Muendel H-H 1982 Dinitrogen fixation measured by15N isotope dilution in two Canadian soybean cultivars. Agron. J. 74, 725–730.

    Google Scholar 

  30. Ribes G, Sauvaire Y, Baccou J C, Valette G, Chenon D, Trimble E R and Loubatières-Mariani M M 1984 Effects of fenugreek seeds on endocrine pancreatic secretions in dogs. Ann. Nutr. Metab. 28, 37–43.

    CAS  PubMed  Google Scholar 

  31. Sauvaire Y and Baccou J C 1978 L'obtention de la diosgénine, (25 R)-spirost-5-ène-3 β-ol; problèmes de l'hydrolyse acide des saponines. Lloydia 41, 247–256.

    CAS  Google Scholar 

  32. Sauvaire Y, Baccou J C and Besançon P 1976 Nutritional value of the proteins of a leguminous seed: fenugreek (Trigonella foenum graecum L.). Nutr. Rep. Int. 14, 527–537.

    CAS  Google Scholar 

  33. Sauvaire Y, Baccou J C and Kobrehel K 1984 Solubilization and characterization of fenugreek seed proteins J. Agric. Food Chem. 32, 41–47.

    Article  CAS  Google Scholar 

  34. Srivastava H S 1980 Regulation of nitrate reductase activity in higher plants. Phytochemistry 19, 725–733.

    CAS  Google Scholar 

  35. Thibodeau P S and Jaworski E G 1975 Patterns of nitrogen utilization in the soybean. Planta 127, 133–147.

    Article  CAS  Google Scholar 

  36. Trinick M J, Dilworth M J and Grounds M 1976 Factors affecting the reduction of acetylene by root nodules ofLupinus species. New Phytol. 77, 359–370.

    CAS  Google Scholar 

  37. Valette G, Sauvaire Y, Baccou J C and Ribes G 1984 Hypocholesterolaemic effect of fenugreek seeds in dogs. Atherosclerosis 50, 105–111.

    Article  CAS  PubMed  Google Scholar 

  38. Waters L, Breen P J, Mack H M and Graham P H 1980 Translocation of14C-photosynthate, carbohydrate content, and nitrogen fixation inPhaseolus vulgaris L. during reproductive development. J. Am. Soc. Hort. Sci. 105, 424–427.

    CAS  Google Scholar 

  39. Witty J F 1983 Estimating nitrogen-fixation in the field using nitrogen-15-labeled fertilizer: Some problems and solutions. Soil Biol. Biochem. 15, 631–640.

    Article  Google Scholar 

  40. Young J P W 1982 The time course of nitrogen fixation, apical growth and fruit development in peas. Ann. Bot. London 49, 135–139.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desperrier, N., Baccou, J.C. & Sauvaire, Y. Fixation de l'azote atmosphérique et assimilation du nitrate chez le fenugrec (Trigonella foenum graecum L.) cultivé au champ. Plant Soil 92, 189–199 (1986). https://doi.org/10.1007/BF02372633

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02372633

Key words

Navigation