Skip to main content
Log in

3D reconstruction method from biplanar radiography using non-stereocorresponding points and elastic deformable meshes

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Standard 3D reconstruction of bones using stereoradiography is limited by the number of anatomical landmarks visible in more than one projection. The proposed technique enables the 3D reconstruction of additional landmarks that can be identified in only one of the radiographs. The principle of this method is the deformation of an elastic object that respects stereocorresponding and non-stereo-corresponding observations available in different projections. This technique is based on the principle that any non-stereocorresponding point belongs to a line joining the X-ray source and the projection of the point in one view. The aim is to determine the 3D position of these points on their line of projection when submitted to geometrical and topological constraints. This technique is used to obtain the 3D geometry of 18 cadaveric upper cervical vertebrae. The reconstructed geometry obtained is compared with direct measurements using a magnetic digitiser. The order of precision determined with the point-to-surface distance between the reconstruction obtained with that technique and reference measurements is about 1 mm, depending on the vertebrae studied. Comparison results indicate that the obtained reconstruction is close to the actual vertebral geometry. This method can therefore be proposed to obtain the 3D geometry of vertebrae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Aziz, Y. I., andKarara, H. M. (1971): ‘Direct linear transformation from comparator coordinates into object space coordinates in close range photogrammetry’. Proc. ASP/UI Symp. Close-Range Photogrammetry, Urbana, Illinois

  • André, B., Dansereau, J., andLabelle, H. (1992): ‘Effect of radiography landmark identification errors on the accuracy of three-dimensional reconstruction of the human spine’,Med. Biol. Eng. Comput.,30, pp. 569–575

    Google Scholar 

  • André, B., Dansereau, J., andLabelle, H. (1994): ‘Optimized vertical stereo base radiographic setup for the clinical three-dimensional reconstruction of the human spine’,J. Biomech.,27, pp. 1023–1035

    Google Scholar 

  • Aubin, C. E., Dansereau, J., Parent, F., Labelle, H., andde, Guise, J. A. (1997): ‘Morphometric evaluations of personalised 3D reconstructions and geometric models of the human spine’,Med. Biol. Eng. Comput.,35, pp. 611–618

    Google Scholar 

  • Battle, X. L., Cunningham, G. S., andHanson, K. M. (1998): ‘Tomographic reconstruction using deformable models’,Investig. Radiol.,33, pp. 348–355

    Google Scholar 

  • Berthonnaud, E., Remy, D., Moyen, B., Carrillon, Y., andDimnet, J. (1998): ‘Inferior limb stereoradiography: technique and applications in clinical pratice’,J. Biomech.,31, S1, p. 116

    Article  Google Scholar 

  • Dansereau, J., andStokes, I. A. F. (1988): ‘Measurements of the threedimensional shape of the rib cage’,J. Biomech.,21, pp. 893–901

    Article  Google Scholar 

  • De Guise J. A., andMartel, Y. (1988): ‘3D biomedical modeling: merging image processing and computer aided design’. IEEE EMBS 10th Int. Conf., New Orleans, pp. 426–427

  • Delorme, S. (1996): ‘Application du krigeage pour l'habillage et la personnalisation de modèle géométrique de la scoliose’. Mémoire de maîtrise, Ecole Polytechnique de Montréal

  • Descrimes, J. L., Aubin, C. E., Boudreault, F., Skalli, W., Zeller, R., Dansereau, J., andLavaste, F. (1995): ‘Modelling of facets joints in a global finite element model of the spine: mechanical aspects’ in ‘Three-dimensional analysis of spinal deformities, studies in health technology and informatics’ (IOS Press),15, pp. 107–112

  • Drerup, B. (1992): ‘3-D acquisition, reconstruction and modelling techniques applied on scoliotic deformities’. Proc. Int. Symp. 3-D Scoliotic Deformities, Montréal, Québec, Canada

  • Landry, C., de Guise, J. A., Dansereau, J., Labelle, H., Skalli, W., Zeller, R. B., andLavaste, F. (1997): ‘Analyse infographique des déformations tridimensionelles des vertèbres scoliotiques’,Ann. Chir. 51, pp. 868–874

    Google Scholar 

  • Le, Borgne, P., Skalli, W., Stokes, I. A. F., Maurel, N., Duval, Beaupère, G., andLavaste, F. (1995): ‘Three-dimensional measurement of a scoliotic spine’. inD'Amico, M., Merolli, A., andSantambroglio, G. C., (Eds): ‘Three-dimensional analysis of spinal deformities’ (IOS Press)

  • Le, Borgne, P., Skalli, W., Dubousset, J., Zeller, R., andLavaste, F. (1998): ‘Finite element model of scoliotic spines: Mechanical personalization’. 4th Int. Symp. Three-Dimensional Scoliotic Deformities, Vermont, USA

  • Marzan, G. T. (1976): ‘Rational design for close-range photogrammetry’. PhD thesis, Department of Civil Engineering, University of Illinois at Urbana-Champaign, USA

  • Maurel, N. (1993): ‘Modelisation géometrique et mécanique tridimensionnelle par éléments finis du rachis cervical inférieur’. Thèse de doctorat en mécanique, ENSAM, Paris

    Google Scholar 

  • Niessen, W. J., ter Haar Romeny, B. M., andViergever, M. A. (1998): ‘Geodesic deformable models for medical image analysis’,IEEE Trans. Med. Imag.,17, pp. 634–641

    Google Scholar 

  • Nyström, L., Söderkvist, I., andWedin P. A. (1994): ‘A note on some identification problems arising in roentgen stereo photogrammetric analysis’,J. Biomech.,27, pp. 1291–1294

    Google Scholar 

  • Panjabi, M. M., Goel, V., Oxland, T., Takata, K., Duranceau, J., Krag, M., andPrice, M. (1992): ‘Human lumbar vertebrae Quantitative three-dimensional anatomy’,Spine,17, pp. 299–306

    Google Scholar 

  • Pearcy, M. J. (1985): ‘Stereo radiography of lumbar spine motion’,Act. Orthop. Scand. 212, pp. 1–45

    Google Scholar 

  • Porrill, J., andIvins, J. (1994): ‘A semiautomatic tool for 3D medical image analysis using active contour models’,Med. Inform.,19, pp. 81–90

    Google Scholar 

  • Sandor, S., andLeahy, R. (1997): ‘Surface-based labelling of cortical anatomy using deformableatlas’,IEEE Trans. Med. Imag.,16, pp. 41–54

    Google Scholar 

  • Scoles, P. V., Linton, A. E., Latimer, E., Levy, M. E., andDigiovanni, B. F. (1988): ‘Vertebral body and posterior element morphology: The normal spine in middle life’,Spine,13, pp. 1082–1086

    Google Scholar 

  • Stokes, I. A. F., andLaible, J. P. (1990): ‘Three-dimensional osseoligamentous model of the thorax representing initiation of scoliosis by asymmetric growth’,J. Biomech.,23, pp. 589–595

    Google Scholar 

  • Trochu, F. (1993): ‘A contouring program based on dual kriging interpolation’,Eng. Comput.,9, pp. 160–177

    Article  Google Scholar 

  • Veron, S. (1997): ‘Modélisation géométrique et mécanique tridimensionelle par éléments finis du rachis cervical supérieur’. Thèse de doctorat en mécanique, ENSAM, Paris

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Mitton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitton, D., Landry, C., Véron, S. et al. 3D reconstruction method from biplanar radiography using non-stereocorresponding points and elastic deformable meshes. Med. Biol. Eng. Comput. 38, 133–139 (2000). https://doi.org/10.1007/BF02344767

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344767

Keywords

Navigation