Skip to main content
Log in

GABA-B receptor activation in the rat globus pallidus potently suppresses pentylenetetrazol-induced tonic seizures

  • Original Paper
  • Published:
Journal of Biomedical Science

Abstract

To determine the involvement of the globus pallidus in mediating epilepsy, the effects of microinjection of a GABA uptake blocker (tiagabine), a benzodiazepine agonist (zolpidem) and a GABA-B receptor agonist (baclofen) on pentylenetetrazol (PTZ)-induced tonic seizure were examined in adult rats. Administration of PTZ induced tonic seizures in all control animals, accompanied with a 100% mortality rate. Pretreatment with bilateral intrapallidal microinjection of tiagabine (1 mM) suppressed the incidence of tonic seizures to 67.7% and reduced the mortality rate to 16.7%. Furthermore, the latency to tonic seizures was 1,275 ± 277 s, which was significantly longer than that of the corresponding control animals (319 ± 225 s). On the other hand, administration of zolpidem (1 mM) was without significant effects on the mortality rate, the incidence and latency of the tonic seizure. In sharp contrast, microinjection of baclofen (1mM) completely suppressed PTZ-induced tonic seizures and reduced the mortality rate to 0%. This effect was largely abolished by co-injection of the GABA-B receptor antagonist CGP55845. To elucidate the direct cellular action of baclofen, the excitability and membrane potential of globus pallidus neurons were studied by cell-attached and whole-cell patch-clamp recordings in the brain slice. Bath application of baclofen (50 µM) significantly reduced the firing of these neurons, and was often accompanied by a clear membrane hyperpolarization, in a CGP55845-sensitive manner. These data suggest that activation of GABA-B receptors in globus pallidus could significantly modulate PTZ-induced tonic seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bekenstein JW, Lothman EW. Dormancy of inhibitory interneurons in a model of temporal lobe epilepsy. Science 259:97–100;1993.

    PubMed  Google Scholar 

  2. Bolam JP, Hanley JJ, Booth PAC, Bevan MD. Synaptic organization of the basal ganglia. J Anat 196:527–542;2000.

    Article  PubMed  Google Scholar 

  3. Charara A, Heilman C, Levey AI, Smith Y. Pre-and postsynaptic localization of GABA-B receptors in the basal ganglia in monkeys. Neuroscience 95:127–140;2000.

    Article  PubMed  Google Scholar 

  4. Chen L, Boyes J, Yung WH, Bolam JP. Subcellular localization of GABAB receptor subunits in rat globus pallidus. J Comp Neurol, in press.

  5. Chen L, Chan SCY, Yung WH. Rotational behavior and electrophysiological effect of GABA-B receptor activation in the rat globus pallidus. Neuroscience 114:417–425;2002.

    Article  PubMed  Google Scholar 

  6. Chen L, Chan SCY, Yung WH. Electrophysiological and behavioral effects of zolpidem in rat globus pallidus. Exp Neurol, in press.

  7. Chen L, Yung WH. Effects of the GABA uptake blocker tiagabine in the rat globus pallidus. Exp Brain Res 152:263–269;2003.

    Article  PubMed  Google Scholar 

  8. Depaulis A, Vergnes M, Marescaux C. Endogenous control of epilepsy: The nigral inhibitory system. Prog Neurobiol 42:33–52;1994.

    Article  PubMed  Google Scholar 

  9. Deransart C, Vercueil L, Marescaux C, Depaulis A. The role of basal ganglia in the control of generalized absence seizures. Epilepsy Res 32:213–223;1998.

    Article  PubMed  Google Scholar 

  10. De Sarro G, Chimirri A, McKernan R, Quirk K, Giusti P, De Sarro A. Anticonvulsant activity of azirino[1,2-d][1,4]benzodiazepines and related 1,4-benzodiazepines in mice. Pharmacol Biochem Behav 58:281–289;1997.

    Article  PubMed  Google Scholar 

  11. De Sarro G, Palma E, Costa N, Marra R, Gratteri S, De Sarro A, Rotiroti D. Effects of compounds acting on GABAB receptors in the pentylenetetrazole kindling model of epilepsy in mice. Neuropharmacology 39:2147–2161;2000.

    Article  PubMed  Google Scholar 

  12. Duncan GE, Breese GR, Criswell HE, Mccown TJ, Herbert JS, Devaud LL, Morrow AL. Distribution of [3H] zolpidem binding sites in relation to messenger RNA encoding the α1, β2 and γ2 subunits of GABAA receptors in rat brain. Neuroscience 64:1113–1128;1995.

    Article  PubMed  Google Scholar 

  13. Dybdal D, Gale K. Postural and anticonvulsant effects of inhibition of the rat subthalamic nucleus. J Neurosci 20:6728–6733;2000.

    PubMed  Google Scholar 

  14. Fink-Jensen A, Suzdak PD, Swedberg MDB, Judge ME, Hansen L, Nielsen PG. The γ-aminobutyric acid (GABA) uptake inhibitor, tiagabine, increases extracellular brain levels of GABA in awake rats. Eur J Pharmacol 220:197–201;1992.

    Article  PubMed  Google Scholar 

  15. Garant DS, Xu SG, Sperber EF, Moshe SL. The influence of thalamic GABA transmission on the susceptibility of adult rats to flurothyl induced seizures. Epilepsy Res 15:185–192;1993.

    Article  PubMed  Google Scholar 

  16. Genton P, Guerrini R, Perucca E. Tiagabine in clinical practice. Epilepsia 42:(suppl 3)42–45;2001.

    Article  Google Scholar 

  17. Haugvicova R, Skutova M, Kubova H, Suchomelova L, Mares P. Two different anticonvulsant actions of tiagabine in developing rats. Epilepsia 41:1357–1381;2000.

    Article  PubMed  Google Scholar 

  18. Hayashi Y. A physiological study of epileptic seizures following cortical stimulation in animals and its application to human clinics. Jpn J Physiol 3:46–64;1952.

    PubMed  Google Scholar 

  19. Hosford DA, Clark S, Cao Z, Wilson WAJr, Lin FH, Morrisett RA, Huin A, The role of GABAB receptor activation in absence seizures of lethargic (lh/lh) mice. Science 257:398–401;1992.

    PubMed  Google Scholar 

  20. Iadarola MJ, Gale K. Substantia nigra: Site of anti-convulsant activity mediated by gamma-aminobutyric acid. Science 218:1237–1240;1982.

    PubMed  Google Scholar 

  21. Kapur J, Macdonald RL. Rapid seizure-induced reduction of benzodiazepine and zinc sensitivity of hippocampal dentate granule cell GABAA receptors. J Neurosci 17:7532–7540;1997.

    PubMed  Google Scholar 

  22. Makulkin RF, Novytskyi SA, Korniienko TV. Role of globus pallidus in mechanisms of anti-epileptic caudate-cortical effects. Fiziol Zh 38:3–9;1992.

    Google Scholar 

  23. Makulkin RF, Novytskyi SA, Korniienko TV. Effect of entopeduncular nucleus and reticular part of substantia nigra on the antiepileptic activity of the caudate nucleus in the neocortex. Fiziol Zh 40:3–9;1994.

    Google Scholar 

  24. Olsen RW, Avoli M. GABA and epileptogenesis. Epilepsia 38:399–407;1997.

    Article  PubMed  Google Scholar 

  25. Olsen RW, Bureau M, Houser CR, Delgado-Escueta AV, Richards JG, Möhler H. GABA/benzodiazepine receptors in human focal epilepsy. Epilepsy Res (Suppl) 8:383–391;1992.

    Google Scholar 

  26. Olsen RW, DeLorey TM, Gordey M, Kang MH. GABA receptor function and epilepsy. Adv Neurol 79:499–510;1999.

    PubMed  Google Scholar 

  27. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. Academic Press, New York. 1986.

    Google Scholar 

  28. Sabatino M, La Grutta V, Ferraro G, La Grutta G. Relations between basal ganglia and hippocampus: Action of substantia nigra and pallidum. Rev Electroencephalogr Neurophysiol Clin 16:179–190;1986.

    Article  PubMed  Google Scholar 

  29. Sawamura A, Hashizume K, Tanaka T. Electrophysiological, behavioral and metabolical features of globus pallidus seizures induced by a microinjection of kainic acid in rats. Brain Res 935:1–8;2002.

    Article  PubMed  Google Scholar 

  30. Sawamura A, Hashizume K, Yoshida K, Tanaka T. Kainic acid-induced substantia nigra seizure in rats: Behavior, EEG and metabolism. Brain Res 911:89–95;2001.

    Article  PubMed  Google Scholar 

  31. Schachter SC. Pharmacology and clinical experience with tiagabine. Expert Opin. Pharmacother 2:179–187;2001.

    Article  PubMed  Google Scholar 

  32. Schuler V, Lüscher C, Blanchet C, Klix N, Sansig G, Klebs K, Schmutz M, Heid J, Gentry C, Urban L, Fox A, Spooren W, Jaton AL, Vigouret J, Pozza M, Kelly PH, Mosbacher J, Froestl W, Käslin E, Korn R, Bischoff S, Kaupman K, van der Putten H, Bettler B. Epilepsy, hyperalgesia, impaired memory and loss of pre- and postsynaptic GABA-B responses in mice lacking GABA-B(1). Neuron 31:47–58;2001.

    Article  PubMed  Google Scholar 

  33. Sperber EF, Wurpel JN, Moshe SL. Evidence for the involvement of nigral GABAB receptors in seizures of rat pups. Brain Res Dev Brain Res 47:143–146;1989.

    Article  PubMed  Google Scholar 

  34. Suzdak PD, Foged C, Andersen KE. Quantitative autoradiographic characterization of the binding of [3H]tiagabine (NNC 05-328) to the GABA uptake carrier. Brain Res 647:231–241;1994.

    Article  PubMed  Google Scholar 

  35. Veliskova J, Loscher W, Moshe SL. Regional and specific effects of zolpidem microinfusions in the substantia nigra on seizures. Epilepsy Res 30:107–114;1998.

    Article  PubMed  Google Scholar 

  36. Veliskova J, Velisek L, Moshé SL. Age-specific effects of baclofen on pentylenetetrazol-induced seizures in developing rats. Epilepsia 37:718–722;1996.

    Article  PubMed  Google Scholar 

  37. Wurpel JN. Baclofen prevents rapid amygdala kindling in adult rats. Experientia 50:475–478;1994.

    Article  PubMed  Google Scholar 

  38. Wurpel JN, Sperber EF, Moshe SL. Baclofen inhibits amygdala kindling in immature rats. Epilepsy Res 5:1–7;1990.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Chan, YS. & Yung, WH. GABA-B receptor activation in the rat globus pallidus potently suppresses pentylenetetrazol-induced tonic seizures. J Biomed Sci 11, 457–464 (2004). https://doi.org/10.1007/BF02256094

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02256094

Key Words

Navigation