Skip to main content
Log in

Central limit theorems for empirical andU-processes of stationary mixing sequences

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

This paper gives sufficient conditions for the weak convergence to Gaussian processes of empirical processes andU-processes from stationary β mixing sequences indexed byV-C subgraph classes of functions. If the envelope function of theV-C subgraph class is inL p for some 2<p<∞, we obtain a uniform central limit theorem for the empirical process under the β mixing condition

$$k^{p/(p - 2)} (\log k)^{2(p - 1)/(p - 2)} \beta _k \to 0 as k \to \infty $$

In the case that the functions in theV-C subgraph class are uniformly bounded, we obtain uniform central limit theorems for the empirical process and theU-process, provided that the decay rate of the β mixing coefficient satisfies β k =O(k r) for somer>1. These conditions are almost minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen, N. T. and Dobrić, V. (1987). The central limit theorem for stochastic processes.Ann. Prob. 15, 164–177.

    Google Scholar 

  2. Andrews, D. W. K. (1991). An empirical process central limit theorem for dependent nonidentically distributed random variables.J. Mult. Anal. 38, 187–203.

    Google Scholar 

  3. Andrews, D. W. K. and Pollard, D. (1990). An introduction to functional central limit theorems for dependent processes. Preprint.

  4. Arcones, M. A. and Giné, E. (1993). Limit theorems forU-processes.Ann. Prob. 23, 1494–1542.

    Google Scholar 

  5. Bernstein, S. N. (1927). Sur l'extension du théorème limite du calcul des probabilités aux sommes de quantités dépendantes.Math. Ann. 97, 1–59.

    Google Scholar 

  6. Bonami, A. (1968). Ensembles λ(p) dans le dual deD .Ann. Inst. Four. 18, 193–204.

    Google Scholar 

  7. Bradley, R. C. (1985). On the central limit question under absolute regularity.Ann. Prob. 13, 1314–1325.

    Google Scholar 

  8. Doukhan, P., Massart, P., Rio, E. (1992a). The functional central limit theorem for strongly mixing processes. Tech. Rept. Univ. de Paris-Sud, France.

  9. Doukhan, P., Massart, P., and Rio, E. (1992b). Invariance principles for absolute regular empirical processes. Tech. Rept. Univ. de Paris-Sud, France.

  10. Dudley, R. M. (1967). The sizes of compact subsets of Hilbert space and continuity of Gaussian processes.J. Funct. Ann. 1, 290–330.

    Google Scholar 

  11. Dudley, R. M. (1978). Central limit theorem for empirical processes.Ann. Prob. 6, 899–929.

    Google Scholar 

  12. Dudley, R. M. (1984). A course on empirical processes.Lect. Not. in Math. 1097, 1–142, Springer, New York.

    Google Scholar 

  13. Eberlein, E. (1984). Weak rates of convergence of partial sums of absolute regular sequences.Statist. Prob. Lett. 2, 291–293.

    Google Scholar 

  14. Giné, E. and Zinn, J. (1984). Some limit theorems for empirical processes.Ann. Prob. 12, 929–989.

    Google Scholar 

  15. Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution.Ann. Math. Statist. 19, 293–325.

    Google Scholar 

  16. Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables.J. Amer. Statist. Assos. 58, 13–30.

    Google Scholar 

  17. Hoffmann-Jørgensen, J. (1984).Convergence of Stochastic Processes on Polish Spaces. Unpublished.

  18. Ibragimov, I. A. (1962). Some limit theorems for stationary processes.Th. Prob. Appl. 7, 349–382.

    Google Scholar 

  19. Ibragimov, I. A. and Linnik, Yu. V. (1971).Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff Publishing, Groningen, The Netherlands.

    Google Scholar 

  20. de Jong, R. M. (1993). Stochastic equicontinuity for unbounded mixing processes. Tech. Report. Free University of Amsterdam, The Netherlands.

    Google Scholar 

  21. Kolmogorov, A. M. and Tikhomirov, V. M. (1961). The ε-entropy and ε-capacity of sets in functional spaces.Amer. Math. Soc. Transl. 17, 277–364.

    Google Scholar 

  22. Lee, A. J. (1990).U-Statistics, Theory and Practice. Marcel Dekker, Inc., New York.

    Google Scholar 

  23. Massart, P. (1988). Invariance principles for empirical processes: the weakly dependent case. Chapter 1B of Ph.D. dissertation. Univ. of Paris.

  24. Nobel, A. and Dembo, A. (1990). On uniform convergence for dependent processes. Preprint.

  25. Nolan, D. and Pollard, D. (1987).U-processes: rates of convergence.Ann. Statist. 15, 780–799.

    Google Scholar 

  26. Nolan, D. and Pollard, D. (1988). Functional limit theorems forU-processes.Ann. Prob. 16, 1291–1298.

    Google Scholar 

  27. de la Peña, V. (1992). Decoupling and Khintchine's inequalities forU-statistics.Ann. Prob. 20, 1877–1892.

    Google Scholar 

  28. Le Cam, L. (1984). A remark on empirical measures. In Bickel, P., Doksum, K., and Hodges, J. (eds.),Festschrift for E. L. Lehmann, pp. 305–327. Belmont, CA: Wadsworth.

    Google Scholar 

  29. Philipp, W. (1982). Invariance principles for sums of mixing random elements and the multivariate empirical processes.Colloquia Mathematica Societatis János Bolyai 36, 843–873.

    Google Scholar 

  30. Pisier, G. (1983). Some applications of the metric entropy condition to harmonic analysis.Lect. Not. in Math. 995, 123–154, Springer, New York.

    Google Scholar 

  31. Pollard, D. (1984).Convergence of Stochastic Processes. Springer, New York.

    Google Scholar 

  32. Rio, E. (1992). Covariance inequalities for strongly mixing processes. Tech. Rept. Univ. de Paris-Sud, France.

  33. Serfling, R. J. (1980).Approximation theorems of Mathematical Statistics. Wiley, New York.

    Google Scholar 

  34. Volkonskii, V. A. and Rozanov, Y. A. (1959). Some limit theorems for random functions I.Theor. Prob. Appl. 4, 178–197.

    Google Scholar 

  35. Volkonskii, V. A. and Rozanov, Y. A. (1961). Some limit theorems for random functions I.Theor. Prob. Appl. 6, 186–198.

    Google Scholar 

  36. Yoshihara, K. (1976). Limiting behavior ofU-statistics for stationary, absolute regular processes.Z. Wahrsch. verw. Geb. 35, 237–252.

    Google Scholar 

  37. Yu, B. (1990). Rates of convergence and central limit theorems for empirical processes of stationary mixing sequences. Tech. Rep. 260, Stat. Dept., Univ. of California, Berkeley.

    Google Scholar 

  38. Yu, B. (1993). Rates of convergence of empirical processes for stationary mixing sequences.Ann. Prob. (to appear).

  39. Yukich, J.E. (1986). Rates of convergence for classes of functions: the non-i.i.d. case.J. Mult. Anal. 20, 175–189.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by NSF Grant No. DMS-8505550 during the authors' visit to the MSRI. Research also supported by ARO Grant DAAL03-91-G-007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arcones, M.A., Yu, B. Central limit theorems for empirical andU-processes of stationary mixing sequences. J Theor Probab 7, 47–71 (1994). https://doi.org/10.1007/BF02213360

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02213360

Key Words

Navigation