Skip to main content
Log in

The evolution of stramenopiles and alveolates as derived by “substitution rate calibration» of small ribosomal subunit RNA

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The substitution rate of the individual positions in an alignment of 750 eukaryotic small ribosomal subunit RNA sequences was estimated. From the resulting rate distribution, an equation was derived that gives a more precise relationship between sequence dissimilarity and evolutionary distance than hitherto available. Trees constructed on the basis of evolutionary distances computed by this new equation for small ribosomal subunit RNA sequences from ciliates, apicomplexans, dinoflagellates, oomycetes, hyphochytriomycetes, bicosoecids, labyrinthuloids, and heterokont algae show a more consistent tree topology than trees constructed in the absence of “substitution rate calibration.” In particular, they do not suffer from anomalies caused by the presence of extremely long branches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • De Rijk P, De Wachter R (1993) DCSE, an interactive tool for sequence alignment and secondary structure research. Comput Appl Biosci 9:735–740

    Google Scholar 

  • De Rijk P, Van de Peer Y, Van den Broeck I, De Wachter R (1995) Evolution according to large ribosomal subunit RNA. J Mol Evol 41:366–375

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Gajadhar AA, Marquardt WC, Hall R, Gunderson J, Ariztia-Carmona EV, Sogin ML (1991) Ribosomal RNA sequences ofSarcocystis muris, Theileria annulata, andCrypthecodinium cohnii reveal evolutionary relationships among apicomplexans, dinoflagellates, and ciliates. Mol Biochem Parasitol 45:147–154

    Google Scholar 

  • Goggin CL, Barker SC (1993) Phylogenetic position of the genusPerkinsus (Protista, Apicomplexa) based on small subunit ribosomal RNA. Mol Biochem Parasitol 60:65–70

    Google Scholar 

  • Jin L, Nei M (1990) Limitations of the evolutionary parsimony method of phylogenetic analysis. Mol Biol Evol 7:82–102

    Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HH (ed) Mammalian protein metabolism. New York: Academic Press, pp 21–132

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Google Scholar 

  • Knoll AH (1992) The early evolution of eukaryotes: a geological perspective. Science 256:622–627

    Google Scholar 

  • Leipe DD, Wainright PO, Gunderson JH, Porter D, Patterson DJ, Valois F, Himmerich S, Sogin ML (1994) The stramenopiles from a molecular perspective: 16S-like rRNA sequences fromLabyrinthuloides minuta andCafeteria roenbergensis. Phycologia 33:369–377

    Google Scholar 

  • Olsen GJ (1987) Earliest phylogenetic branchings: comparing rRNA-based evolutionary trees inferred with various techniques. Cold Spring Harbor Symp Quant Biol LII:825–837

    Google Scholar 

  • Patterson DJ (1989) Stramenopiles: chromophytes from a protistan perspective. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae: problems and perspectives. Oxford: Clarendon, pp 357–379

    Google Scholar 

  • Patterson DJ, Sogin ML (1992) Eukaryote origins and protistan diversity. In: Hartman H, Matsuno K (eds) The origin and evolution of prokaryotic and eukaryotic cells. New Jersey: World Scientific, pp 13–46

    Google Scholar 

  • Pawlowski J, Bolivar I, Guiard-Maffia J, Gouy M (1994) Phylogenetic position of Foraminifera inferred from LSU rRNA gene sequences. Mol Biol Evol 11:929–938

    Google Scholar 

  • Preisig HR, Anderson OR, Corliss JO, Moestrup O, Powell MJ, Roberson RW, Wetherbee R (1994) Terminology and nomenclature of protist cell surface structures. Protoplasma 181:1–28

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    Google Scholar 

  • Saitou N, Imanishi T (1989) Relative efficiencies of the Fitch-Margoliash, maximum-parsimony, maximum-likelihood, minimum-evolution, and neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree. Mol Biol Evol 6:514–525

    Google Scholar 

  • Saunders GW, Potter D, Paskind MP, Andersen RA (1995) Cladistic analyses of combined traditional and molecular data sets reveal an algal lineage. Proc Natl Acad Sci USA 92:244–248

    Google Scholar 

  • Sourdis J, Nei M (1988) Relative efficiencies of the maximum parsimony and distance-matrix methods in obtaining the correct phylogenetic tree. Mol Biol Evol 5:298–311

    Google Scholar 

  • Tajima F, Nei M (1984) Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1:269–285

    Google Scholar 

  • Van de Peer Y, De Wachter (1993) TREECON: a software package for the construction and drawing of evolutionary trees. Comput Appl Biosci 9:177–182

    Google Scholar 

  • Van de Peer Y, Neefs J-M, De Rijk P, De Wachter R (1993a) Reconstructing evolution from eukaryotic small-ribosomal-subunit RNA sequences: calibration of the molecular clock. J Mol Evol 37:221–232

    Google Scholar 

  • Van de Peer Y, Neefs J-M, De Rijk P, De Wachter R (1993b) Evolution of eukaryotes as deduced from small ribosomal subunit RNA sequences. Biochem Syst Ecol 21:43–55

    Google Scholar 

  • Van de Peer Y, De Wachter (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570

    Google Scholar 

  • Van de Peer Y, Van den Broeck I, De Rijk P, De Wachter R (1994) Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 22:3488–3494

    Google Scholar 

  • Van der Auwera G, De Baere R, Van de Peer Y, De Rijk P, Van den Broeck I, De Wachter R (1995) The phylogeny of the Hyphochytriomycota as deduced from ribosomal RNA sequences ofHyphochytrium catenoides. Mol Biol Evol 12:671–678

    Google Scholar 

  • Vivier E, Desportes I (1989) Phylum Apicomplexa. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Boston: Jones and Bartlett, pp 549–573

    Google Scholar 

  • Wainright PO, Hinkle G, Sogin ML, Stickel SK (1993) Monophyletic origin of the Metazoa: an evolutionary link with fungi. Science 260:340–342

    Google Scholar 

  • Wolters J (1991) The troublesome parasites—molecular and morphological evidence that Apicomplexa belong to the dinoflagellateciliate clade. Biosystems 25:75–83

    Google Scholar 

  • Wray CG, Langer MR, DeSalle R, Lee JJ, Lipps JH (1995) Origin of the foraminifera. Proc Natl Acad Sci USA 92:141–145

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van de Peer, Y., Van der Auwera, G. & De Wachter, R. The evolution of stramenopiles and alveolates as derived by “substitution rate calibration» of small ribosomal subunit RNA. J Mol Evol 42, 201–210 (1996). https://doi.org/10.1007/BF02198846

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02198846

Key words

Navigation