Skip to main content
Log in

Selectable marker recycling in the chloroplast

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

The bacterial geneaadA is an important and widely used selectable marker for manipulation of the chloroplast genome through biolistic transformation. Because no other such marker is available, two strategies for recycling of theaadA cassette have been developed. One utilizes homologous recombination between two direct repeats flanking theaadA cassette to allow its loss under non-selective growth conditions. A second strategy is to perform co-transformation with a plasmid containing a modified, non-essential chloroplast gene and another plasmid in which theaadA cassette disrupts a chloroplast gene known to be essential for survival. Under selective growth conditions the first mutation can be transferred to all chloroplast DNA copies whereas theaadA insertion remains heteroplasmic. Loss of the selectable marker can be achieved subsequently by growing the cells on non-selective media. In both cases it is possible to reuse theaadA cassette for the stepwise disruption or mutagenesis of any gene in the same strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alani E, Cao L, Kleckner N (1987) A method for gene disruption that allows repeated use ofURA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545

    PubMed  Google Scholar 

  • Bennoun P, Girard J, Chua N-H (1977) A uniparental mutant ofChlamydomonas reinhardtii deficient in the chlorophyll-protein complex CP1. Mol Gen Genet 153:343–348

    Google Scholar 

  • Blowers AD, Bogorad L, Shark KB, Sanford JC (1989) Studies onChlamydomonas chloroplast transformation: foreign DNA can be stably maintained in the chromosome. The Plant Cell 1:123–132

    PubMed  Google Scholar 

  • Boynton JE, Gilham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, Sanford JC (1988) Chloroplast transformation inChlamydomonas with high velocity microprojectiles. Science 240:1534–1538

    PubMed  Google Scholar 

  • Boynton JE, Gilham NW, Harris EH, Newman SM, Randolph-Anderson BL, Johnson AM, Jones AR (1990) Manipulating the chloroplast genome ofChlamydomonas: molecular genetics and transformation. Curr Res Photosynth 3:509–516

    Google Scholar 

  • Boynton JE, Gillham NW, Newman SN, Harris EH (1992) Organelle genetics and transformation ofChlamydomonas. In: Herrmann RC (ed) Cell organelles (Advances in Plant Gene Research, vol. 6). Springer-Verlag, Vienna

    Google Scholar 

  • Carrer H, Maliga P (1995) Targeted insertion of foreign genes into the tobacco plastid genome without physical linkage to the selectable marker gene. Bio Technology 13:791–794

    Google Scholar 

  • Cerutti H, Johnson AM, Boynton JE, Gilham NW (1995) Inhibition of chloroplast DNA recombination and repair by dominant negative mutants ofEscherichia coli RecA. Mol Cell Biol 15:3003–3011

    PubMed  Google Scholar 

  • Chua N-H, Matlin K, Bennoun P (1975) A chlorophyll-protein complex lacking in photosystem I mutants ofChlamydomonas reinhardtii. J Cell Biol 67:361–377

    PubMed  Google Scholar 

  • Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11:323–328

    Google Scholar 

  • Goldschmidt-Clermont M (1991) Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker for site-directed transformation ofChlamydomonas. Nucleic Acid Res 19:4083–4089

    PubMed  Google Scholar 

  • Harris EH (1989) TheChlamydomonas sourcebook. Academic Press, San Diego

    Google Scholar 

  • Huang C, Wang S, Chen L, Lemieux C, Otis C, Turmel M, Liu XQ (1994) TheChlamydomonas chloroplastclpP gene contains translated large insertion sequences and is essential for cell growth. Mol Gen Genet 244:151–159

    PubMed  Google Scholar 

  • Kindle KL, Richards KL, Stern DB (1991) Engineering the chloroplast genome: techniques and capabilities for chloroplast transformation inChlamydomonas reinhardtii. Proc Natl Acad Sci USA 88:1721–1725

    PubMed  Google Scholar 

  • Künstner P, Guardiola A, Takahashi Y, Rochaix J-D (1995) A mutant strain ofChlamydomonas reinhartii lacking the chloroplast photosystem IIpsbI gene grows photoautotrophically. J Biol Chem 270:9651–9654

    PubMed  Google Scholar 

  • Newman SM, Boynton JE, Gilham NW, Randolph-Anderson BL, Johnson AM, Harris EH (1990) Transformation of chloroplast ribosomal RNA genes inChlamydomonas: molecular and genetic characterization of integration events. Genetics 126:875–888

    PubMed  Google Scholar 

  • Newman SM, Gilham NW, Harris EH, Johnson AM, Boynton JE (1991) Targeted disruption of chloroplast genes inChlamydomonas reinhardtii. Mol Gen Genet 230:65–74

    PubMed  Google Scholar 

  • Rochaix J-D (1978) Restriction endonuclease map of the chloroplast DNA ofChlamydomonas reinhardtii. J Mol Biol 126:597–617

    PubMed  Google Scholar 

  • Rochaix J-D, Mayfield S, Goldschmidt-Clermont M, Erickson J (1988) Molecular biology ofChlamydomonas. In: Shaw CH (ed) Plant molecular biology: a practical approach. IRL Press, Oxford, pp 253–275

    Google Scholar 

  • Rodday SM, Webber AN, Bingham SE, Biggins J (1995) Evidence that the Fx domain in photosystem I interacts with the subunit PsaC: site-directed changes in PsaB destabilize the subunit interaction inChlamydomonas reinhardtii. Biochemistry 34:6328–6334

    PubMed  Google Scholar 

  • Roffey R, Sayre R (1990) Isolation of site-specific chloroplastpsbA mutations inChlamydomonas having null phenotypes via cotransformation. Plant Physiol 93 (Suppl):22

    Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    PubMed  Google Scholar 

  • Svab Z, Maliga P (1993) High efficiency plastid transformation in tobacco by selection for chimericaadA gene. Proc Natl Acad Sci USA 90:913–917

    PubMed  Google Scholar 

  • Takahashi Y, Goldschmidt-Clermont M, Soen S-Y, Franzen L-G, Rochaix J-D (1991) Directed chloroplast transformation inChlamydomonas reinhardtii: insertional inactiviation of thepsaC gene encoding the iron sulfur protein destabilizes photosystem I. EMBO J 10:2033–2040

    PubMed  Google Scholar 

  • Zerges W, Rochaix J-D (1994) The 5′leader of a chloroplast mRNA mediates the translational requirements for two nucleus-encoded functions inChlamydomonas reinhardtii. MCB 14:5268–5277

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. G. Herrmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, N., Stampacchia, O., Redding, K. et al. Selectable marker recycling in the chloroplast. Molec. Gen. Genet. 251, 373–380 (1996). https://doi.org/10.1007/BF02172529

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02172529

Key words

Navigation