Skip to main content
Log in

The13C isotope and nuclear magnetic resonance: unique tools for the study of brain metabolism

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

As studies of brain metabolism grow in complexity, investigators turn increasingly to nuclear magnetic resonance spectroscopy combined with13C isotopic labeling. The unique ability to detect labeling non-destructively in specific carbon positions of individual compounds has opened the way to investigate brain metabolism in systems ranging from cellular preparations to the human brainin vivo. This review is written for investigators whose backgrounds do not include detailed knowledge of principles of nuclear magnetic resonance. Its purpose is to show the wide array of NMR techniques for13C detection that are available for application in different systems to study aspects of brain metabolism, such as metabolic compartmentation and measurements of the tricarboxylic acid cycle ratein vivo. Basic NMR concepts are explained, and, because each detection method possesses specific advantages to address the requirements of different experimental goals, basic explanations and examples are given for each technique. The review should provide readers with a basic understanding of the methods of13C detection by NMR and assess which of the methods are most applicable to the particular issues they may face in their own research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abragam, A. (1961).The Principles of Nuclear Magnetism, Oxford University Press, Oxford.

    Google Scholar 

  • Bachelard, H., and Badar-Goffer, R. (1993). NMR spectroscopy in neurochemistry.J. Neurochem. 61:412–429.

    PubMed  Google Scholar 

  • Bachelard, H., Badar-Goffer, R., Ben-Yoseph, O., Morris, P., and Thatcher, N. (1993). Studies on metabolic regulation using NMR spectroscopy.Dev. Neurosci. 15:207–215.

    PubMed  Google Scholar 

  • Badar-Goffer, R.S., Bachelard, H.S., and Morris, P.G. (1990). Cerebral metabolism of acetate and glucose studied by13C-n.m.r. spectroscopy.Biochem. J. 266:133–139.

    PubMed  Google Scholar 

  • Badar-Goffer, R.S., Ben-Yoseph, O., Bachelard, H.S., and Morris, P.G. (1992). Neuronal-glial metabolism under depolarizing conditions — a13C-n.m.r. study under depolarizing conditions.Biochem. J. 282:225–230.

    PubMed  Google Scholar 

  • Beckmann, N., Turkalj, I., Seelig, J., and Keller, U. (1991).13C NMR for the assessment of human brain glucose metabolismin vivo.Biochemistry 30:6362–6366.

    Article  PubMed  Google Scholar 

  • Behar, K L., Petroff, O.A.C., Prichard, J.W., Alger, J.R., and Shulman, R.G. (1986). Detection of metabolites in rabbit brain by13C NMR spectroscopy following administration of [1-13C]glucose.Magn. Reson. Med. 3:911–920.

    PubMed  Google Scholar 

  • Bendall, M.R., den Hollander, J.A., Arias-Mendoza, F., Rothman, D.L., Behar, K.L., and Shulman, R.G. (1985). Application of multipulse NMR to observe13C-labeled metabolites in biological systems.Magn. Reson. Med. 2:56–64.

    PubMed  Google Scholar 

  • Bendall, M.R., and Pegg, D.T. (1983). Complete accurate editing of decoupled13C spectra using DEPT and a quaternary-only sequence.J. Magn. Reson. 53:272–296.

    Google Scholar 

  • Brainard, J.R., Kyner, E., and Rosenberg, G.A. (1989).13C nuclear magnetic resonance evidence for γ-aminobutyric acid formation via pyruvate carboxylase in rat brain: a metabolic basis for compartmentation.J. Neurochem. 53:1285–1292.

    PubMed  Google Scholar 

  • Brand, A., Richter-Landsberg, C., and Leibfritz, D. (1993). Multinuclear NMR studies on the energy metabolism of glial and neuronal cells.Dev. Neurosci. 15:289–298.

    PubMed  Google Scholar 

  • Burum, D.B., and Ernst, R R. (1980). Net polarization transfer via a J-ordered state for signal enhancement of low-sensitivity nuclei.J. Magn. Reson. 39:163–168.

    Google Scholar 

  • Cerdán, S., Künnecke, B., and Seelig, J. (1990). Cerebral metabolism of [1,2-13C]acetate as detected byin vivo andin vitro 13C NMR.J. Biol. Chem. 265:12916–12926.

    PubMed  Google Scholar 

  • Chance, E.M., Seeholzer, S.H., Kobayashi, K., and Williamson, J.R. (1983). Mathematical analysis of isotope labeling in the citric acid cycle with applications to13C NMR studies in perfused rat hearts.J. Biol. Chem. 258:13785–13794.

    PubMed  Google Scholar 

  • Chapa, F., Künnecke, B., Calvo, R., Escobar del Rey, F., Morreale de Escobar, G., Cerdán, S. (1995). Adult-onset hypothyroidism and the cerebral metabolism of (1,2-13C) acetate as detected by13C nuclear magnetic resonance.Endocrin. 136:296–305.

    Article  Google Scholar 

  • Chen, W., and Ackerman, J.J.H. (1989). Surface coil single-pulse localizationin vivo via inhomogenous surface-spoiling magnetic gradient.Nucl. Magn. Reson. Biomed. 1:205–207.

    Google Scholar 

  • Chen, W., Novotny, E.J., Boulware, S.D., Rothman, D.L., Mason, G.F., Zhu, Z.-H., Blamire, A., Prichard, J.W., and Shulman, R.G. (1994). Quantitative measurements of regional TCA cycle flux in visual cortex of human brain using1H-{13C} NMR spectroscopy.Proc. Soc. Magn. Reson. Med., 13th Annual Mtg, p. 63.

  • Clark, J.B., and Lai, J.C.K. (1989). Glycolytic, tricarboxylic acid cycle, and related enzymes in brain. In (A.A. Boulton, G.B. Baker and R.F. Butterworth, eds.),Neuromethods, Humana, Clifton, NJ, Vol. 11, pp. 233–281.

    Google Scholar 

  • Cohen, S.M., and Shulman, R.G. (1982). In (J. Cohen, ed.),Noninvasive Probes of Tissue Metabolism, Wiley, New York, pp. 119–147.

    Google Scholar 

  • Cohen, S M., Shulman, R.G., Williamson, J.R., and McLaughlin, A.C. (1980). In (R.G. Thurman, ed.),Alcohol and Aldehyde Metabolizing Systems, Academic Press, New York, Vol. 4, pp. 419–432.

    Google Scholar 

  • Davis, D., Artemov, D., Eleff, S., and van Zijl, P.C.M. (1995). Comparison of techniques forin vivo 13C NMR spectroscopy.Proc. Soc. Magn. Reson., 3rd Scientific Mtg, p. 524.

  • den Hollander, J.A., Ugurbil, K., and Shulman, R.G. (1986).31P and [13C]NMR studies of intermediates of aerobic and anaerobic glycolysis in saccharomyces cerevisiae.Biochem. 25:212–219.

    Article  Google Scholar 

  • Doddrell, D.M., Pegg, D.T., and Bendall, M.R. (1982). Distortionless enhancement of NMR signals by polarization transfer.J. Magn. Reson. 48:323–327.

    Google Scholar 

  • Farrar, T.C., and Becker, E.D. (1971).Pulse and Fourier Transform NMR: Introduction to Theory and Methods. Academic Press, New York, NY.

    Google Scholar 

  • Fitzpatrick, S.M., Hetherington, H.P., Behar, K.L., and Shulman R.G. (1990). The flux from glucose to glutamate in the rat brain in vivo as determined by1H-observed/13C-edited NMR spectroscopy.J. Cereb. Blood Flow Metab. 10:170–179.

    PubMed  Google Scholar 

  • Fukishima, E., and Roeder, S.B.W. (1981).Experimental Pulse NMR: a Nuts and Bolts Approach, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts.

    Google Scholar 

  • Garwood, M., and Merkle, H. (1991). Heteronuclear spectral editing with adiabatic pulses.J. Magn. Reson. 94:180–185.

    Google Scholar 

  • Gjedde, A., and Christensen, O. (1984). Estimates of Michaelis-Menten constants for the two membranes of the brain endothelium.J. Cereb. Blood Flow Metab. 4:241–249.

    PubMed  Google Scholar 

  • Gruetter, R., Novotny, E.J., Boulware, S.D., Rothman, D.L., Mason, G.F., Shulman, G.I., Shulman, R.G., and Tamborlane, W.V. (1992). Direct measurement of brain glucose concentrations in humans by13C NMR spectroscopy.Proc. Natl. Acad. Sci. USA 89:1109–1112.

    PubMed  Google Scholar 

  • Gruetter, R., Novotny, E.J., Boulware, S.D., Mason, G.F., Rothman, D.L., Shulman, G.I., Prichard, J.W., and Shulman, R.G. (1994). Localized13C NMR spectroscopy in the human brain of amino acid labeling from [1-13C] D-glucose.J. Neurochem. 63:1377–1385.

    PubMed  Google Scholar 

  • Grutzner, J.B. and Santini, R.E. (1971). Coherent broad-band decoupling — an alternative to proton noise decoupling in carbon-13 nuclear magnetic resonance spectroscopy.J. Magn. Reson. 19:173–187

    Google Scholar 

  • Hanstock, C.C., Rothman, D.L., Prichard, J.W., Jue, T., and Shulman, R.G. (1988). Spatially localized1H NMR spectra of metabolites in the human brain.Proc. Natl. Acad. Sci. USA 85:1821–1825.

    PubMed  Google Scholar 

  • Hawkins, R.A., and Mans, A.M. (1983). Intermediary metabolism of carbohydrates and other fuels. In (A. Lajth, ed.)Handbook of Neurochemistry, Vol. 3. New York, Plenum Press, pp 259–294.

    Google Scholar 

  • Juhlinn-Dannfelt, A. (1977). Ethanol effects of substrate utilization by the human brain.Scand. J. Clin. Lab. Invest. 37:443–449.

    PubMed  Google Scholar 

  • Kauppinen, R.A., Pirttilä, T.-R.M., Auriola, S.O.K., and Williams, S.R. (1994). Compartmentation of cerebral glutamatein situ as detected by1H/13C n.m.r.Biochem. J. 298:121–127.

    PubMed  Google Scholar 

  • Knudsen, G.M., Paulson, O.B., and Hertz, M.M. (1991). Kinetic analysis of the human blood-brain barrier transport of lactate and its influence by hypercapnia.J. Cereb. Blood Flow Metab. 11:581–586.

    PubMed  Google Scholar 

  • Künnecke, B., Cerdán, S., and Seelig, J. (1993). Cerebral metabolism of [1,2-13C2]glucose and [U-13C4]3-hydroxybutyrate in rat brain as detected by13C NMR spectroscopy.NMR Biomed. 6:264–277.

    PubMed  Google Scholar 

  • Lai, J.C.K. (1992). Oxidative metabolism in neuronal and non-neuronal mitochondria.Can. J. Physiol. Pharmacol. 70:S130-S137.

    PubMed  Google Scholar 

  • Lai, J.C.K., and Clark, J.B. (1978). Isocitric dehydrogenase and malate dehydrogenase in synaptic and non-synaptic rat brain mitochondria: a comparison of their kinetic constants.Biochem. Soc. Trans. 6:993–995.

    PubMed  Google Scholar 

  • Lai, J.C.K., and Clark, J.B. (1989). Isolation and characterization of synaptic and non- synaptic mitochondria from mammalian brain. In (A.A. Boulton, G.B. Baker, R.F. Butterworth, eds.),NeuroMethods, Humana, Clifton, NJ, Vol. 11, pp. 43–98.

    Google Scholar 

  • Leo, G.C., Driscoll, B.F., Shank, R.P., and Kaufman, E. (1993). Analysis of [1-13C] D-glucose metabolism in cultured astrocytes and neurons using nuclear magnetic resonance spectroscopy.Dev. Neurosci. 15:282–288.

    PubMed  Google Scholar 

  • Malloy, C.R., Sherry, A.D., and Jeffrey, F.M.H. (1990). Analysis of tricarboxylic acid cycle of the heart using13C isotope isomers.Am. J. Physiol. 259:H987-H995.

    PubMed  Google Scholar 

  • Mason, G.F., Pan, J.W., Chu, W.J., Zhang, Y.T., Khazaeli, M.B., Williams, R.et al. (1996). TCA cycle rate measurement in human brain by indirect13C detection with a volume coil.Proceedings of the International Society for Magnetic Resonance in Medicine, Fourth Scientific Meeting and Exhibition, p. 407.

  • Mason, G.F., Gruetter, R., Rothman, D.L., Behar, K.L., Shulman, R.G., and Novotny, E.J. (1995). Simultaneous determination of the rates of the TCA cycle, glucose utilization, and α-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR.J. Cereb. Blood Flow Metab. 15:12–25.

    PubMed  Google Scholar 

  • Mason, G.F., Pan, J.W., Ponder, S.L., Twieg, D.B., Pohost, G.M., and Hetherington, H.P. (1994). Detection of brain glutamate and glutamine in spectroscopic images at 4.1 T.Magn. Reson. Med. 32:142–145.

    PubMed  Google Scholar 

  • Mason, G.F., Behar, K.L., Rothman, D.L., and Shulman, R.G. (1992a). NMR determination of intracerebral glucose concentration and transport kinetics in rat brain.J. Cereb. Blood Flow Metab. 12:448–455.

    PubMed  Google Scholar 

  • Mason, G.F., Rothman, D.L., Behar, K.L., and Shulman, R G. (1992b). NMR determination of TCA cycle rate and α-ketoglutarate/glutamate exchange in rat brain.J. Cereb. Blood Flow Metab. 12:434–447.

    PubMed  Google Scholar 

  • Morris, G.A., and Freeman, R. (1979). Enhancement of nuclear magnetic resonance signals by polarization transfer.J. Amer. Chem. Soc. 101:760–762.

    Article  Google Scholar 

  • Novotny, E.J., Gruetter, R., Rothman, D.L., Boulware, S., Tamborlane, W.V., and Shulman, R.G. (1993). Chronic hyperglycemia does not alter steady-state human brain glucose concentrations: a13C NMR study.Proc. Soc. Magn. Reson. Med., 12th Annual Mtg, p. 324.

  • Novotny, E.J., Ogino, T., Rothman, D.L., Petroff, O.A.C., Prichard, J.W., and Shulman, R.G. (1990). Direct carbon versus proton heteronuclear editing of 2-13C ethanol in rabbit brainin vivo: a sensitivity comparison.Magn. Reson. Med. 16:431–443.

    PubMed  Google Scholar 

  • Ordidge, R.J., Connelly, A., and Lohman, A. B. (1986). Image-selected in vivo spectroscopy (ISIS). A new technique for spatially selective nmr spectroscopy.J. Magn. Reson. 66:283–294.

    Google Scholar 

  • Pan, J.W., Mason, G.F., Pohost, G.M., and Hetherington, H.P. (1996). Spectroscopic imaging of human brain glutamate by water suppressed J-refocused coherence transfer at 4.1 T.Magn. Reson. Med. (accepted for publication)

  • Petroff, O.A.C., Burlina, A.P., Black, J., and Prichard, J.W. (1991). Metabolism of [1-13C]glucose in a synaptosomally enriched fraction of rat cerebrum studied by1H/13C magnetic resonance spectroscopy.Neurochem. Res. 16:1245–1251.

    Article  PubMed  Google Scholar 

  • Petroff, O.A.C., Spencer, D.D., Alger, J.R., and Prichard, J.W. (1989). High-field proton magnetic resonance spectroscopy of human cerebrum obtained during surgery for epilepsy.Neurology 39:1197–1202.

    PubMed  Google Scholar 

  • Portais, J.C., Pianet, I., Allard, M., Merle, M., Raffard, G., Kien, P., Biran, M., Labouesse, J., Caille, J.M., and Canioni, P. (1991). Magnetic resonance spectroscopy and metabolism. Applications of proton and13C NMR to the study of glutamate metabolism in cultured glial cells and human brainin vivo.Biochimie 73:93–97.

    Article  PubMed  Google Scholar 

  • Reibstein, D., den Hollander, J.A., Pilkis, S.J., and Shulman, R.G. (1986). Studies on the regulation of yeast phosphofructo-1-kinase: its role in aerobic and anaerobic glycolysis.Biochemistry 25:219–227.

    Article  PubMed  Google Scholar 

  • Rothman, D.L. (1987).Application of Multipulse 1H and 13C NMR for measuring in vivo rates of metabolism. Ph.D. dissertation, Yale University.

  • Rothman, D.L., Behar, K.L., Hetherington, H.P., den Hollander, J.A., Bendall, M.R., Petroff, O.A.C., and Shulman, R.G. (1985).1H-Observe/13C-decouple spectroscopic measurements of lactate and glutamate in the rat brainin vivo.Proc. Natl. Acad. Sci. USA 82:1633–1637.

    PubMed  Google Scholar 

  • Rothman, D.L., Hanstock, C.C., Petroff, O.A.C., Novotny, E.J., Prichard, J.W., and Shulman, R.G. (1992a). Localized1H NMR spectra of glutamate in the human brain.Magn. Reson. Med. 25:94–106.

    PubMed  Google Scholar 

  • Rothman, D.L., Novotny, E.J., Shulman, G.I., Howseman, A.M., Petroff, O.A.C., Mason, G., Nixon, T., Hanstock, C.C., Prichard, J.W., and Shulman, R.G. (1992b).1H-[13C] NMR measurements of [4-13C]glutamate turnover in human brain.Proc. Natl. Acad. Sci. USA 89:9603–9606.

    PubMed  Google Scholar 

  • Schupp, D.G., Merkle, H., Ellermann, J.M., Ke, Y., and Garwood, M. (1993). Localized detection of glioma glycolysis using edited1H MRS.Magn. Reson. Med. 30:18–27.

    PubMed  Google Scholar 

  • Seelig, J., and Burlina, A.P. (1992). Carbon-13 magnetic resonance in biology and medicine.Clin. Chim. Acta 206:125–136.

    Article  PubMed  Google Scholar 

  • Shaka, A.J., Keeler, J., and Freeman, R. (1985). Evaluation of a new broadband decoupling sequence: WALTZ-16.J. Magn. Reson. 53:313–340

    Google Scholar 

  • Shank, R.P., Leo, G., and Zielke, H.R. (1993). Cerebral metabolic compartmentation as revealed by nuclear magnetic resonance anslysis of D-[1-13C]glucose metabolism.J. Neurochem. 61:315–323.

    PubMed  Google Scholar 

  • Shulman, R.G., Brown, T.R., Ugurbil, K., Ogawa, S., Cohen, S.M., and den Hollander, J.A. (1979). Cellular applications of31P and13C nuclear magnetic resonance.Science 205:160–166.

    PubMed  Google Scholar 

  • Sillerud, L.O., Alger, J.R., and Shulman, R.G. (1981). High-resolution proton NMR studies of intracellular metabolites in yeast using13C decoupling.J. Magn. Reson. 45:142–150.

    Google Scholar 

  • Sillerud, L.O., and Shulman, R.G. (1983). High-resolution13C nuclear magnetic resonance studies of glucose metabolism in Escherichia coli.Biochemistry 22:1087–1094.

    Article  PubMed  Google Scholar 

  • Sonnewald, U., Gribbestad, I.S., Westergaard, N., Krane, J., Unsgård, G., Petersen, S.B., and Schousboe, A. (1991). First direct demonstration of preferential release of citrate from astrocytes using [13C] NMR spectroscopy of cultured neurons and astrocytes.Neurosci. Lett. 128:235–239.

    Article  PubMed  Google Scholar 

  • Sonnewald, U., Gribbestad, I.S., Westergaard, N., Nilsen, G., Unsgård, G., Schousboe, A., and Petersen, S.B. (1994). Nuclear magnetic resonance spectroscopy - biochemical evaluation of brain functionin vivo.Neurotoxicol. 15:579–590.

    Google Scholar 

  • Sonnewald, U., Westergaard, N., Hassel, B., Müller, T.B., Unsgård, G., Fonnum, F., Hertz, L., Schousboe, A., Petersen, S.B. (1993a). NMR spectroscopic studies of13C acetate and13C glucose metabolism in neocortical astrocytes: evidence for mitochondrial heterogeneity.Dev. Neurosci. 15:351–358.

    PubMed  Google Scholar 

  • Sonnewald, U., Westergaard, N., Petersen, S.B., Unsgård, G., and Schousboe, A. (1993b). Metabolism of [U-13C]glutamate in astrocytes studied by13C NMR spectroscopy: incorporation of more label into lactate than into glutamine demonstrates the importance of the tricarboxylic acid cycle.J. Neurochem. 61:1179–1182.

    PubMed  Google Scholar 

  • Sonnewald, U., Westergaard, N., Schousboe, A., Svendsen, J.S., Unsgård, G., and Petersen, S.B. (1993c). Direct demonstration by [13C] NMR spectroscopy that glutamine from astrocytes is a precursor for GABA synthesis in neurons.Neurochem. Int. 22:19–29.

    Article  PubMed  Google Scholar 

  • Van den Berg, C.J., and Garfinkel, D. (1971). A simulation study of brain compartments: metabolism of glutamate and related substances in mouse brain.Biochem. J. 123: 211–218.

    PubMed  Google Scholar 

  • van Zijl, P.C.M., Chesnick, A.S., DesPres, D., Moonen, C.T.W., Ruiz-Cabello, J., and van Gelderen, P. (1993).In vivo proton spectroscopy and spectroscopic imaging of {1-13C}-glucose and its metabolic products.Magn. Reson. Med. 30:544–551.

    PubMed  Google Scholar 

  • van Zijl, P.C.M., Davis, D., Eleff, S.M., Moonen, C.T.W., Parker, R., and Strong, J. (1995). Glucose transport and metabolic kinetics of brain from dynamic1H{13C} NMR.Proc. Soc. Magn. Reson., 3rd Scientific Mtg p. 271.

  • Vaughan, J.T., Hetherington, H.P., Otu, J.O., Pan, J.W., and Pohost, G.M. (1994). High frequency volume coils for clinical NMR imaging and spectroscopy.Magn. Reson. Med. 32:206–218.

    PubMed  Google Scholar 

  • Westergaard, N., Sonnewald, U., Unsgård, G., Peng, L., Hertz, L., and Schousboe, A. (1994). Uptake, release, and metabolism of citrate in neurons and astrocytes in primary cultures.J. Neurochem. 62:1727–1733.A1938001 00002 CS-SPJRNPDF [HEADSUP]

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, G.F., Behar, K.L. & Lai, J.C.K. The13C isotope and nuclear magnetic resonance: unique tools for the study of brain metabolism. Metab Brain Dis 11, 283–313 (1996). https://doi.org/10.1007/BF02029492

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02029492

Keywords

Navigation