Skip to main content
Log in

Kinetics of thermal dehydroxylation of aluminous goethite

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

The kinetics of dehydroxylation of synthetic aluminous goethite was studied using isothermal and non-isothermal thermogravimetry. The complete isothermal dehydroxylation can be described by the Johnson-Mehl equation with up to three linear regions in plots of lnln [1/(1−y)]vs. Int Kinetics for the initial stage of dehydroxylation changed from diffusion to first-order through the temperature range 190 to 260°C. The rate of dehydroxylation was reduced by Al-substitution and increased with temperature. Activation energy for dehydroxylation, calculated from the time to achieve a given dehydroxylation extent, varied depending on the extent of dehydroxylation and Al-substitution. Non-stoichiometric OH existed in goethite and some remained in hematite after the complete crystallographic transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. W. Brindley and M. Nakahira, J. Am. Ceram. Soc., 42 (1959) 311–314, 314–418, 319–324.

    Google Scholar 

  2. H. F. W. Taylor, Clay Miner. Bull., 5 (1962) 45.

    Google Scholar 

  3. J. B. Holt, I. B. Cutler and M. E. Wadsworth, J. Am. Ceram. Soc., 45 (1962) 133.

    Google Scholar 

  4. F. Toussaint, J. J. Fripiat and M. C. Gastuche, J. Phys. Chem., 67 (1963) 26.

    Google Scholar 

  5. S. A. T. Redfern, Clay Miner., 22 (1987) 447.

    Google Scholar 

  6. H. F. W. Taylor, Clays Clay Min. Proc. 12th Conf., Pergamon Press, 1964, p. 9–10.

  7. E. B. Allison, Silicates Ind., 19 (1954) 363.

    Google Scholar 

  8. P. Murray and J. White, Trans. Brit. Ceram. Soc., 54 (1955) 137.

    Google Scholar 

  9. J. D. Hancock and J. H. Sharp, J. Am. Ceram. Soc., 55 (1972) 74.

    Google Scholar 

  10. G. W. Brindley, J. H. Sharp, J. H. Patterson and B. N. Narahari, Am. Miner., 52 (1967) 201.

    Google Scholar 

  11. J. M. Criado, A. Ortega, C. Real and E. Torres de Torres, Clay Miner., 19 (1984) 653.

    Google Scholar 

  12. C. J. Goss, Miner. Mag., 51 (1987) 437.

    Google Scholar 

  13. K. Jónás and K. Solymár, Acta Chim. Acad. Sci. Hung., 66 (1970) 383.

    Google Scholar 

  14. M. B. Fey and J. B. Dixon, Clays Clay Miner., 29 (1981) 91.

    Google Scholar 

  15. R. C. Mackenzie and G. Berggren, Differential Thermal Analysis 1, Academic Press, 1970, p. 271–302.

  16. D. G. Schulze and U. Schwertmann, Clay Miner., 19 (1984) 521.

    Google Scholar 

  17. I. Rozenson and L. Heller-Kállai, Clays Clay Miner., 28 (1980) 391.

    Google Scholar 

  18. H. D. Ruan and R. J. Gilkes, Clay Clay Miner., 43 (1995) 196.

    Google Scholar 

  19. J. B. Pollack, D. Pitmen, B. N. Khare and C. Sagan, J. Geophysical Research, 75 (1970) 7481.

    Google Scholar 

  20. J. B. Pollack, R. N. Wilson and G. G. Goles, J. Geophysical Research, 75 (1970) 7491.

    Google Scholar 

  21. E. Wolska and U. Schwertmann, Z. Kristallographie, 189 (1989) 223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruan, H.D., Gilkes, R.J. Kinetics of thermal dehydroxylation of aluminous goethite. Journal of Thermal Analysis 46, 1223–1238 (1996). https://doi.org/10.1007/BF01979237

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01979237

Keywords

Navigation