Skip to main content
Log in

Decrease of inorganic blood sulfate following treatment with selected antirheumatic drugs: Potential consequence for articular cartilage

  • Inflammation and Immunomodulation
  • Published:
Agents and Actions Aims and scope Submit manuscript

Abstract

The elimination kinetics of inorganic blood sulfate in mice was followed for four hours after a single, oral administration of an antirheumatic drug. Sodium salicylate, aspirin, diflunisal and benorylate, all in a dose of 1.25 mmol/kg, reduced the sulfate level to the less than half that of control. This phenomenon was also demonstrated by phenylbutazone, oxyphenbutazone (both 1 mmol/kg), chloroquine diphosphate (0.6 mmol/kg) and tiaprofenic acid (0.02–0.35 mmol/kg). Niflumic acid (1.08 mmol/kg), piroxicam (0.03 mmol/kg), indomethacin (6·10−3 mmol/kg), diclofenac (5·10−3 mmol/kg), ketoprofen (0.2 mmol/kg), naproxen (0.08 mmol/kg) and ibuprofen (0.24 mmol/kg) possessed no sulfate lowering properties. The potential relevance of the use of sulfate lowering drugs for articular cartilage integrity is discussed in the light of what is already known about this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Greiling and B. Schuler, Zur Wirkungsweise der Salizylsäure, Azetylsalizylsäure und des Salizylamids. Z. Rheumaforsch.22, 47–56 (1963).

    PubMed  Google Scholar 

  2. M. E. Morris and G. Levy,Serum concentration and renal excretion by normal adults of inorganic sulfate after acetaminophen, ascorbic acid, or sodium sulfate. Clin. Pharmacol. Ther.33, 529–536 (1983).

    PubMed  Google Scholar 

  3. B. J. de Vries, W. B. van den Berg and L. B. A. van de Putte,Salicylate-induced depletion of endogenous inorganic sulfate. Potential role in the suppression of sulfated glycosaminoglycan synthesis in murine articular cartilage. Arthritis Rheum.28, 922–929 (1985).

    PubMed  Google Scholar 

  4. K. Schimmelpfennig,Problems connected with in vivo labeling of embryonic glycosaminoglycans with Na 2 35 SO 4 in teratological studies. Naunyn Schmiedebergs Arch. Pharmakol.271, 320–324 (1971).

    Article  PubMed  Google Scholar 

  5. M. E. Morris, O. Kwon and I. L. Mansfield,Sulfate homeostasis. I. Effect of salicylic acid and its metabolites on inorganic sulfate in rats. J. Pharmacol. Exp. Ther.244, 945–949 (1988).

    PubMed  Google Scholar 

  6. P. K. Halstead and D. A. Roe,Effect of salicylamide on skeletal glycosaminoglycan sulfation and calcification in fetal rat limbs. Drug Nutr. Interact.1, 75–86 (1981).

    PubMed  Google Scholar 

  7. P. M. van der Kraan, B. J. de Vries, E. L. Vitters, W. B. van den Berg and L. B. A. van de Putte,Inhibition of glycosaminoglycan synthesis in anatomically intact rat patellar cartilage by paracetamol-induced serum sulfate depletion. Biochem. Pharmacol.37, 3683–3690 (1988).

    Article  PubMed  Google Scholar 

  8. B. J. de Vries, W. B. van den Berg, E. Vitters and L. B. A. van de Putte,Effects of NSAIDs on the metabolism of sulfated glycosaminoglycans in healthy and (post) arthritic murine articular cartilage. Drugs35 (Suppl. 1), 24–32 (1988).

    PubMed  Google Scholar 

  9. B. J. de Vries, W. B. van den Berg, E. Vitters and L. B. A. van de Putte,The effect of salicylate on anatomically intact articular cartilage is influenced by sulfate and serum in the culture medium. J. Rheumatol.13, 686–693 (1986).

    PubMed  Google Scholar 

  10. M. J. Palmoski and K. D. Brandt,Effects of some nonsteroidal antiinflammatory drugs on proteoglycan metabolism and organization in canine articular cartilage. Arthritis Rheum.23, 1010–1020 (1980).

    PubMed  Google Scholar 

  11. M. W. Whitehouse and H. Boström,The effect of some antiinflammatory (anti-rheumatic) drugs on the metabolism of connective tissues. Biochem. Pharmacol.11, 1175–1201 (1962).

    Article  PubMed  Google Scholar 

  12. B. J. de Vries, W. B. van den Berg, E. Vitters and L. B. A. van de Putte,Quantitation of glycosaminoglycan metabolism in anatomically intact articular cartilage of the mouse patella: in vitro and in vivo studies with 35 S-sulfate,3 H-glucosamine, and 3 H-acetate. Rheumatol. Int.6, 273–281 (1986).

    Article  PubMed  Google Scholar 

  13. B. J. de Vries, E. Vitters, W. B. van den Berg, D. Schram and L. B. A. van de Putte,Determination of small quantities of sulfate (0–12 nmol) in serum, urine, and cartilage of the mouse. Anal. Biochem.163, 408–417 (1987).

    Article  PubMed  Google Scholar 

  14. G. J. Mulder,Sulfation—Metabolic aspects.Prog. Drug Metab.8, 35–100 (1984).

    Google Scholar 

  15. B. J. de Vries, P. M. van der Kraan and W. B. van den Berg,Antirheumatic drugs which decrease serum sulfate are potentially detrimental to articular cartilage. Arthritis Rheum.31, (Suppl.), S69 (Abstract B55), (1988).

    Google Scholar 

  16. H. Greiling and B. Schuler,Die Beeinflussung des Stoffwechsels der Chondroitinschwefelsäure durch anti rheumatisch wirksame Substanzen. InComunicazione al X Congresso della Lega Internazionale contro il Reumatismo. vol. II, pp. 1368–1369, Roma 1961.

  17. H. Boström, K. Berntsen and M. W. Whitehouse,Biochemical properties of anti-inflammatory drugs—I. Some effects on sulphate— 35 S metabolism in vivo. Biochem. Pharmacol.13, 413–420 (1964).

    Article  PubMed  Google Scholar 

  18. H. Greiling and G. Dörner,Biochemische Untersuchungen zum Wirkungsmechanismus des Resochins. Z. Rheumaforsch21, 316–324 (1964).

    Google Scholar 

  19. J. J. Hjelle, G. A. Hazelton and C. D. Klaassen,Acetaminophen decreases adenosine 3′-phosphate 5′-phosphosulfate and uridine diphosphoglucuronic acid in rat liver. Drug Metab. Dispos.13, 35–41 (1985).

    PubMed  Google Scholar 

  20. J. A. Waschek, R. M. Fielding, S. M. Pond, G. M. Rubin, D. J. Effeney and T. N. Tozer,Dose-dependent sulfoconjugation of salicylamide in dogs: Effect of sulfate depletion or administration. J. Pharmacol. Exp. Ther.234, 431–434 (1985).

    PubMed  Google Scholar 

  21. S. Hendrix-Treacy, S. M. Wallace, K. W. Hindmarsh, G. M. Wyant and A. Danilkewich,The effect of acetaminophen administration on its disposition and body stores of sulphate. Eur. J. Clin. Pharmacol.30, 273–278 (1986).

    Article  PubMed  Google Scholar 

  22. P. M. van der Kraan, E. L. Vitters, B. J. de Vries, W. B. van den Berg and L. B. A. van de Putte,The effect of chronic paracetamol administration to rats on the glycosaminoglycan content of patellar cartilage. Agents and Actions, in press, (1989).

  23. A. Maroudas and H. Evans,Sulphate diffusion and incorporation into human articular cartilage. Biochim. Biophys. Acta338, 265–279 (1974).

    Google Scholar 

  24. M. W. Whitehouse,Biochemical properties of anti-inflammatory drugs-III. Uncoupling of oxidative phosphorylation in a connective tissue (cartilage) and liver mitochondria by salicylate analogues: relationship of structure to activity. Biochem. Pharmacol.13, 319–336 (1964).

    PubMed  Google Scholar 

  25. W. B. Jakoby, J. R. Bend and J. Caldwell (eds.)Metabolic basis of detoxication, vol. 3, Academic press, New York 1982.

    Google Scholar 

  26. Z. Gregus, C. Madhu and C. D. Klaassen,Species variation in toxication and detoxication of acetaminophen in vivo: a comparative study of biliary and urinary excretion of acetaminophen metabolites. J. Pharmacol. Exp. Ther.244, 91–99 (1988).

    PubMed  Google Scholar 

  27. K. R. Krijgsheld, E. Scholtens and G. J. Mulder,An evaluation of methods to decrease the availability of inorganic sulphate for sulphate conjugation in the rat in vivo. Biochem. Pharmacol.30, 1973–1979 (1981).

    Article  PubMed  Google Scholar 

  28. J. D. Sallis, T. J. Martin, M. de Luise and R. A. Melick,Relationship of the parathyroids and calcitonin in maintaining sulphate homeostasis. Horm. Metab. Res.2, 238–241 (1970).

    PubMed  Google Scholar 

  29. J. Rohner and D. Planche,Mechanism of the analgesic effect of calcitonin, evidence for a twofold effect: morphine-like and cortisone-like. Clin. Rheumatol.4, 218–219 (1985).

    PubMed  Google Scholar 

  30. S. E. Abdullahi, E. A. Martelli, E. Bramm, L. Franco and G. P. Velo,Effect of calcitonin on different inflammatory models. Agents Actions7, 533–538 (1977).

    PubMed  Google Scholar 

  31. F. Berglund and W. D. Lotspeich,Renal tubular reabsorption of inorganic sulfate in the dog, as affected by glomerular filtration rate and sodium chloride. Am. J. Physiol.185, 533–538 (1956).

    PubMed  Google Scholar 

  32. G. Herbai,Effect of adrenalectomy, corticosteroids and some other anti-inflammatory agents, salazopyrin, thyroxine and vitamin A on the exchangeable sulphate pool and on sulphate incorporation in vivo into costal cartilage of the mouse. Acta pharmacol. et toxicol.29, 164–176 (1971).

    Google Scholar 

  33. G. Herbai,Effect of pregnancy, castration, testosterone, ethisterone, oestradiol benzoate and stilboestrol on the exchangeable sulphate pool and on sulphate incorporation in vivo into costal cartilage of the mouse. Acta pharmacol. et toxicol.29, 177–193 (1971).

    Google Scholar 

  34. P. Lundquist, J. Mårtensson, B. Sörbo and S. Öhman,Turbidimetry of inorganic sulfate, ester sulfate and total sulfur in urine. Clin. Chem.26, 1178–1181 (1980).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vries, B.J., van der Kraan, P.M. & van den Berg, W.B. Decrease of inorganic blood sulfate following treatment with selected antirheumatic drugs: Potential consequence for articular cartilage. Agents and Actions 29, 224–231 (1990). https://doi.org/10.1007/BF01966451

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01966451

Keywords

Navigation