Skip to main content
Log in

Herbivory in holometabolous and hemimetabolous insects: contrasts between Orthoptera and Lepidoptera

  • Multi-Author Review
  • Insect Chemical Ecology
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Adaptation to a phytophagous diet involves physiological compromises that may be influenced by developmental constraints. In this review, we compare patterns of hostplant utilization with respect to nutrition and allelochemistry in representative holometabolous (lepidopteran) and hemimetabolous (orthopteran) species in order to identify those potential constraints. Overall in Lepidoptera greater molting efficiency and gut permeability, which enhance nutritional efficiency, result in higher exposure to allelochemicals and are associated with greater activity and inducibility of cytochrome P450 monoxygenase detoxication enzymes. In contrast, in Orthoptera, relative impermeability to allelochemicals due to the peritrophic membrane and cuticular sclerotization is associated with reduced nutritional efficiency and lower detoxication enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agosin, M., Role of microsomal oxidations in insecticide degradation, in: Comprehensive Insect Physiology, Biochemistry and Pharmacology, vol. 12, pp. 647–712. Eds G. A. Kerkut and L. I. Gilbert. Pergamon Press, New York 1986.

    Google Scholar 

  2. Andersen, S. O., Comparison between the sclerotization of adult and larval cuticle inSchistocerca gregaria. J. Insect Physiol.19 (1973) 1603–1614.

    Article  CAS  Google Scholar 

  3. Bailey, C. G., and Mukerji, M. K., Consumption and utilization of various host plants byMelanoplus bivittatus (Say) andM. femurrubrum (DeGeer) (Orthoptera: Acrididae). Can. J. Zool.54 (1916) 1044–1050.

    Article  Google Scholar 

  4. Benke, G. M., and Wilkinson, C. F., Microsomal oxidation in the house cricket,Acheta domesticus (L.). Pestic. Biochem. Physiol.1 (1971a) 19–31.

    Article  CAS  Google Scholar 

  5. Benke, G. M., and Wilkinson, C. F., In vitro microsomal epoxidase activity and susceptibility to carbaryl and carbaryl-piperonyl butoxide combinations in house crickets of different age and sex. J. econ. Ent.64 (1971b) 1032–1034.

    Article  CAS  Google Scholar 

  6. Benke, G. M., Wilkinson, C. F., and Telford, J. N., Microsomal oxidases in a cockroach,Gromphadorhina portentosa. J. Econ. Ent.65 (1972) 1221–1229.

    Article  CAS  Google Scholar 

  7. Bergot, B. J., Judy, K. J., Schooley, D. A., and Tsai, L. W., Precocene II metabolism: comparativein vivo studies among several species of insects and structure elucidation of two major metabolites. Pestic. Biochem. Physiol.13 (1980) 95–104.

    Article  CAS  Google Scholar 

  8. Bernays, E. A., Tannins: an alternative viewpoint. Ent. exp. appl.24 (1978) 44–53.

    Article  Google Scholar 

  9. Bernays, E. A., A specialized region of the gastric caeca in the locust,Schistocerca gregaria. Physiol. Ent.6 (1981a) 1–6.

    Article  Google Scholar 

  10. Bernays, E. A., Plant tannins and insect herbivores: an appraisal. Ecol. Ent.6 (1981b) 353–360.

    Article  Google Scholar 

  11. Bernays, E. A., The insect on the plant—a closer look. Proc. 5th Int. Symp. Insect-Plant Relationships. Wageningen, Pudoc 1982.

    Google Scholar 

  12. Bernays, E. A., Evolutionary contrasts in insects: nutritional advantages of holometabolous development. Physiol. Ent.11 (1986) 377–382.

    Article  Google Scholar 

  13. Bernays, E. A., and Barbahenn, R., Nutritional ecology of grass foliage-chewing insects, in: Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates, pp. 147–176. Eds F. Slansky and J. Rodriguez J. Wiley, New York 1987.

    Google Scholar 

  14. Bernays, E. A., and Chamberlain, D. J., The significance of dietary tannin for locusts and grasshoppers. J. nat. Hist.16 (1982) 261–266.

    Article  Google Scholar 

  15. Bernays, E. A., Chamberlain, D. J., and Leather, E. M., Tolerance of acridids to ingested condensed tannin. J. chem. Ecol.7 (1981) 247–256.

    Article  CAS  PubMed  Google Scholar 

  16. Bernays, E. A., Chamberlain, D., and McCarthy, P., The differential effects of ingested tannic acid on different species of Acridoidea. Ent. exp. appl.28 (1980) 158–166.

    Article  CAS  Google Scholar 

  17. Bernays, E. A., and Chapman, R. F., Deterrent chemicals as a basis of oligophagy inLocusta migratoria. Ecol. Ent.2 (1977) 1–18.

    Article  Google Scholar 

  18. Bernays, E. A., and Chapman, R. F., The evolution of deterrent responses in plant-feeding insects, in: Perspectives in Chemoreception and Behavior, pp. 159–173. Eds. R. F. Chapman, E. A. Bernays and J. G. Stoffolano, Springer-Verlag, New York 1987.

    Chapter  Google Scholar 

  19. Bernays, E. A., and Woodhead, S., Incorporation of dietary phenols into the cuticle in the tree locustAnacridium melanorhodon. J. Insect Physiol.28 (1982) 601–606.

    Article  CAS  Google Scholar 

  20. Bernays, E. A., and Woodhead, S., The need for high levels of phenylalanine in the diet ofSchistocerca gregaria nymphs. J. Insect Physiol.30 (1984) 489–493.

    Article  CAS  Google Scholar 

  21. Blaney, W. M., Electrophysiological responses of the terminal sensilla on the maxillary palps ofLocusta migratoria (L.) to some electrolytes and some non-electrolytes. J. exp. Biol.60 (1974) 275–293.

    Article  CAS  PubMed  Google Scholar 

  22. Borror, D., DeLong, D., and Triplehorn, C., Introduction to the Study of Insects. Holt, Rinehart and Winston, New York 1976.

    Google Scholar 

  23. Bradley, T. J., The excretory system: structure and physiology, in: Comprehensive Insect Physiology, Biochemistry and Pharmacology, pp. 421–506. Eds G. A. Kerkut and L. I. Gilbert. Pergamon Press, New York 1985.

    Google Scholar 

  24. Brattsten, L. B., Ecological significance of mixed-function oxidations. Drug Metab. Rev.10 (1979) 35–38.

    Article  CAS  PubMed  Google Scholar 

  25. Brattsten, L. B., Biochemical defense mechanisms in herbivores against plant allelochemicals, in: Herbivores. Their Interaction with Secondary Plant Metabolites, pp. 199–270. Eds G. Rosenthal and D. Janzen. Academic Press, New York 1979.

    Google Scholar 

  26. Brattsten, L. B., and Ahmad, S. (Eds) Molecular Aspects of Insect-Plant Associations. Plenum Press, New York 1986.

    Google Scholar 

  27. Brattsten, L. B., Wilkinson, C. F., and Eisner, T., Herbivore-plant interactions: mixed-function oxidases and secondary plant substances. Science196 (1977) 1349–1352.

    Article  CAS  PubMed  Google Scholar 

  28. Chakraborty, J., and Smith, J. N., The oxidation of p-nitrotoluene and p-nitroethylbenzene in insects. Biochem. J.93 (1964) 389–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chakraborty, J., and Smith, J. N., Enzymic oxidation of some alkylbenzenes in insects and vertebrates. Biochem. J.102 (1967) 498–503.

    Article  CAS  PubMed Central  Google Scholar 

  30. Champagne, D. E., Isman, M. B., and Towers, G. H. N., Insecticidal activity of phytochemicals and extracts of the Meliaceae, in: Pesticides of Plant Origin. Eds J. T. Arnason, B. J. R. Philogene and P. Morand. ACS Symp. Series, Washington, in press 1988.

  31. Chapman, R., The Insects: Structure and Function. Elsevier, New York 1971.

    Google Scholar 

  32. Chapman, R. F., Chemoreception. The significance of sensillum numbers. Adv. Insect Physiol.16 (1982) 247–356.

    Article  CAS  Google Scholar 

  33. Chapman, R. F., Coordination of digestion, in: Comprehensive Insect Biochemistry and Physiology, pp. 213–240. Eds G. A. Kerkut and L. I. Gilbert. Pergamon Press, New York 1985.

    Google Scholar 

  34. Chapman, R. F., Sensory aspects of host-plant recognition by Acridoidea: Questions associated with the multiplicity of receptors and variability of response. J. Insect Physiol.34 (1988) 167–174.

    Article  Google Scholar 

  35. Chapman, R. F., and Bernays, E. A., The chemical resistance of plants to insect attact. Pont. Acad. Sci. Scrip. Var.41 (1972) 603–643.

    Google Scholar 

  36. Chapman, R. F., and Thomas, J. G., The numbers and distribution of sensilla on the mouthparts of Acridoidea. Acrida7 (1978) 115–148.

    Google Scholar 

  37. Cohen, R., Heydon, S., Waldbauer, G. P., and Friedman, S., Nutrient self-selection by the omnivorous cockroach,Supella longipalpa. J. Insect Physiol.33 (1987) 77–82.

    Article  Google Scholar 

  38. Cole, B. J., Growth ratios in holometabolous and hemimetabolous insects. Ann. ent. Soc. Am.73 (1980) 489–491.

    Article  Google Scholar 

  39. Cottee, P. K., Bernays, E. A., and Mordue, A. J., Comparisons of deterrency and toxicity of selected secondary plant compounds to an oligophagous and a polyphagous acridid. Ent. exp. appl.46 (1988) 241–247.

    Article  CAS  Google Scholar 

  40. Cox, D. L., and Willis, J. H., The cuticular proteins ofHyalophora cecropia from different anatomical regions and metamorphic stages. Insect Biochem.15 (1985) 349–362.

    Article  CAS  Google Scholar 

  41. Crankshaw, D. L., Hetnarski, H. K., and Wilkinson, C. F., Interspecies cross-reactivity of an antibody to southern armyworm (Spodoptera eridania) midgut NADPH-cytochrome C reductase. Insect Biochem.11 (1981) 593–597.

    Article  CAS  Google Scholar 

  42. Ehmke, A., Isman, M. B., Proksch, P., Witte, L., and Hartmann, T., Metabolism of the alkaloids senecionine and atropine and their N-oxides by the migratory grasshopperMelanoplus sanguinipes. Submitted to Naturwissenschaften 1988.

  43. Ehrlich, P. R., and Murphy, D. D., Plant chemistry and host range in insect herbivores. Ecology69 (1988) 908–909.

    Article  Google Scholar 

  44. Enders, F., Size, food-finding, and Dyar's constant. Envir. Ent.5 (1988) 1–10.

    Article  Google Scholar 

  45. Feeny, P., Rosenberry, L., and Carter, M., Chemical aspects of oviposition behavior in butterflies, in: Herbivorous Insects Hostseeking Behavior and Mechanisms, pp. 27–76. Ed. S. Ahmad. Academic Press, New York 1983.

    Chapter  Google Scholar 

  46. Feyereisen, R., and Durst, F., Ecdysterone biosynthesis: a microsomal cytochrome-P-450-linked ecdysone 20-mono-oxygenase from tissues of the African migratory locust. Eur. J. Biochem.88 (1978) 37–47.

    Article  CAS  PubMed  Google Scholar 

  47. Frazier, J. L., The perception of plant allelochemicals that inhibit feeding, in: Brattsten and Ahmad26.

  48. Haskell, P. T., Paskin, M., and Moorhouse, J. E., Laboratory observations on factors affecting the movement of hoppers of the Desert Locust. J. Insect Physiol.8 (1962) 53–78.

    Article  Google Scholar 

  49. Hodgson, E., Microsomal mono-oxygenases, in: Comprehensive Insect Biochemistry, and Physiology, vol. 11, pp. 225–321. Eds G. Kerkut and L. Gilbert. Pergamon Press, New York 1987.

    Google Scholar 

  50. Isman, M. B. Toxicity and tolerance of sesquiterpene lactones in the migratory grasshopper,Melanoplus sanguinipes (Acrididae). Pestic. Biochem. Physiol.24 (1985) 348–354.

    Article  CAS  Google Scholar 

  51. Isman, M. B., Proksch, P., and Witte, L., Metabolism and excretion of acetylchromenes by the migratory grasshopper. Archs Insect Biochem. Physiol.6 (1987) 109–120.

    Article  CAS  Google Scholar 

  52. Ivie, G. W., Bull, D. L., Beier, R. C., Pryor, N. W., and Oertli, E. H., Metabolic detoxification: mechanism of insect resistance to plant psoralens. Science221 (1983) 374–376.

    Article  CAS  PubMed  Google Scholar 

  53. Iyengar, S., Arnason, J. T., Philogene, B. J. R., Moran, P., Werstiuk, N. H., and Timmins, G., Toxicokinetics of the phototoxic allelochemical α-terthienyl in three herbivorous Lepidoptera. Pestic. Biochem. Physiol.29 (1988) 1–9.

    Article  Google Scholar 

  54. Jones, C. G., and Firn, R. D., Some allelochemicals ofPteridium aquilinum and their involvement in resistance toPieris brassicae. Biochem. Syst. Ecol.7 (1979) 187–192.

    Article  CAS  Google Scholar 

  55. Khan, M., and Matsumura, F., Induction of mixed-function oxidase and protein synthesis by DDT and dieldrin in German and American cockroaches. Pestic. Biochem. Physiol.2 (1972) 236–243.

    Article  CAS  Google Scholar 

  56. Koul, O., Insect feeding deterrents in plants. Ind. Rev. Life Sci.2 (1982) 97–125.

    CAS  Google Scholar 

  57. Kubo, I., and Nakanishi, K., Some terpenoid insect antifeedants from tropical plants, in: Advances in Pesticide Science, vol. 2, pp. 284–294. Ed. H. Geissbuehler. Pergamon Press, Oxford 1979.

    Google Scholar 

  58. Kulkarni, A., Smith, E., and Hodgson, E., Occurrence and characterization of microsomal cytochrome P450 in several vertebrate and insect species. Comp. Biochem. Physiol.54B (1976) 509–513.

    Google Scholar 

  59. Maddrell, S. H. P., and Gardiner, B. O. C., The permeability of the cuticular liming of the insect alimentary canal. J. exp. Biol.85 (1980) 227–237.

    Article  CAS  Google Scholar 

  60. Miller, J. S., Phylogenetic systematics and chemical constraints on host-plant associations in the Papilioninae (Lepidoptera: Papilionidae). Doctoral dissertation, Cornell University, Ithaca, New York 1986.

    Google Scholar 

  61. Muckenstorm, B., Duplay, D., Robert, P. C., Simonis, M. T., and Kienlen, J. C., Substances antiappetantes pours insects phytophages presentes dansAngelica silvestris etHeracleum sphondylium. Biochem. Syst. Ecol.9 (1981) 289–292.

    Article  Google Scholar 

  62. Mulkern, G. B., Food selection by grasshoppers. A. Rev. Ent.12 (1967) 59–78.

    Article  Google Scholar 

  63. Nakanishi, K., Insect antifeedants from plants in: Insect Biology in the Future, pp. 603–612. Eds M. Locke and D. S. Smith. Academic Press, New York 1980.

    Chapter  Google Scholar 

  64. Norris, D., Laboratory experiments on oviposition responses of the Desert Locust,Schistocerca gregaria (Forsk). Anti-Locust Bull.43 (1968) 1–47.

    Google Scholar 

  65. Otte, D., and Joern, A., Insect territoriality and its evolution: population studies of desert grasshoppers on creosote bushes. J. Anim. Ecol.44 (1977) 29–54.

    Article  Google Scholar 

  66. Rowell, H., Foodplant specificity in Neotropical rain-forest acridids. Ent. exp. appl.24 (1978) 451–462.

    Article  Google Scholar 

  67. Rowell, C. H. F., The feeding biology of a species-rich genus of rainforest grasshoppers (Rhachicreagra, Orthoptera, Acrididae). II. Foodplant preference and its relation to speciation. Oecologia68 (1985) 99–104.

    Article  CAS  PubMed  Google Scholar 

  68. Scudder, G. G. E., and Meredith, J., The permeability of the midgut of three insects to cardiac glycosides. J. Insect Physiol.28 (1982) 689–694.

    Article  CAS  Google Scholar 

  69. Self, L. S., Guthrie, F. E., and Hodgson, E., Metabolism of nicotine by tobacco feeding insects. Nature204 (1964) 300–301.

    Article  CAS  PubMed  Google Scholar 

  70. Simpson, S. J., Simmonds, M. S. J., and Blaney, W. M., A comparison of dietary selection behaviour in larvalLocusta migratoria andSpodoptera littoralis. Physiol. Ent.13 (1988) 225–238.

    Article  Google Scholar 

  71. Slansky, F., and Scriber, J. M., Food consumption and utilization, in: Comprehensive Insect Biochemistry and Physiology, pp. 87–163. Eds C. Kerkut and L. Gilbert. Pergamon Press, New York 1985.

    Google Scholar 

  72. Städler, E., Contact chemoreception, in: Chemical Ecology of Insects, pp. 3–36. Eds W. Bell and R. Carde. Sunderland Sinauer Assoc. 1984.

  73. Steinly, B., and Berenbaum, M., Histopathological effects of tannins on the midgut epithelium ofPapilio polyxenes andPapilio glaucus. Ent. exp. appl.11 (1985) 1349–1358.

    Google Scholar 

  74. Terriere, L. C., Induction of detoxication enzymes in insects. A. Rev. Ent.29 (1984) 71–88.

    Article  CAS  Google Scholar 

  75. Terriere, L. C., and Yu, S., The induction of detoxifying enzymes in insects. J. agric. Food Chem.22 (1974) 366–373.

    Article  CAS  PubMed  Google Scholar 

  76. Turunen, S., Absorption, in: Comprehensive Insect Physiology, Biochemistry and Pharmacology, pp. 241–277. Eds G. A. Kerkut and L. I. Gilbert. Pergamon Press, New York 1985.

    Google Scholar 

  77. Uvarov, B., Grasshoppers and Locusts, vol. 1. Cambridge Univ. Press 1966.

  78. Uvarov, B., Grasshoppers and Locusts, vol. 2. Cambridge Univ. Press 1977.

  79. van Drongelen, W., Contact chemoreception of host plant specific chemicals in larvae of variousYponomeuta species (Lepidoptera). J. comp. Physiol.134 (1979) 265–279.

    Article  Google Scholar 

  80. Williams, C., Growth in insects, in: Insect Biology in the Future, pp. 369–384. Eds M. Locke and D. S. Smith. Academic Press, New York 1980.

    Chapter  Google Scholar 

  81. Winstanley, C., and Blaney, W. M., Chemosensory mechanisms of locusts in relation to feeding. Ent. exp. appl.24 (1978) 550–558.

    Article  Google Scholar 

  82. Yu, S. J., Microsomal oxidases in the mole crickets,Scapteriscus acletus Rhen and Hebard andScapteriscus vicinus Scudder. Pestic. Biochem. Physiol.17 (1982) 170–176.

    Article  CAS  Google Scholar 

  83. Yu, S. J., Induction of detoxifying enzymes by allelochemicals and host plants in the fall armyworm. Pestic. Biochem. Physiol.19 (1983) 330–336.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berenbaum, M.R., Isman, M.B. Herbivory in holometabolous and hemimetabolous insects: contrasts between Orthoptera and Lepidoptera. Experientia 45, 229–236 (1989). https://doi.org/10.1007/BF01951808

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01951808

Key words

Navigation