Skip to main content
Log in

AnO(N logN) minimal spanning tree algorithm forN points in the plane

  • Part I Computer Science
  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We shall present a divide-and-conquer algorithm to construct minimal spanning trees out of a set of points in two dimensions. This algorithm is based upon the concept of Voronoi diagrams. If implemented in parallel, its time complexity isO(N) and it requiresO(logN) processors whereN is the number of input points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Aho, J. E. Hopcroft and J. D. Ullman,The Design and Analysis of Computer Algorithms, Addison Wesley, Reading, Mass. (1974).

    Google Scholar 

  2. J. L. Bentley,A parallel algorithm for constructing minimum spanning trees, Journal of Algorithms, Vol. 1, No. 1 (1980), 51–59.

    Article  Google Scholar 

  3. J. L. Bentley and J. H. Friedman,Fast algorithms for constructing minimal spanning trees in coordinate spaces, IEEE Transactions on Computers, Vol. C-27, No. 2 (1978), 97–105.

    Google Scholar 

  4. J. L. Bentley and H. T. Kung,A tree machine for searching problems, Proceedings, IEEE 1979 International Conference on Parallel Processing (1979), pp. 257–266.

  5. M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest and R. E. Tarjan,Time bound for selection, Journal of Computer and System Sciences, Vol. 7, No. 4 (1972), pp. 724–742.

    Google Scholar 

  6. B. Delaunay,Sur la sphere vide, Bull. Acad. Sci. USSR (VII), Classe Sci. Mat. Nat. (1934), pp. 793–800.

  7. J. Katajainen,On the worst case of a minimal spanning tree algorithm for Euclidean space, BIT Vol. 23 (1983), pp. 2–8.

    Article  Google Scholar 

  8. D. T. Lee and B. J. Schachter,Two algorithms for constructing Delaunay triangulations, International Journal of Computer and Information Sciences, Vol. 9, No. 3 (1980), pp. 219–242.

    Article  Google Scholar 

  9. O. Nevalainen, J. Ernvall and J. Katajainen,Finding minimal spanning trees in a Euclidean coordinate space, BIT, Vol. 21 (1981), pp. 46–54.

    Article  Google Scholar 

  10. M. I. Shamos,Computational Geometry, Ph.D. Thesis, Yale University (1978).

  11. M. I. Shamos and D. Hoey,Closest point problems, 16th Annual IEEE Symp. on Foundations of Computer Science (1975), pp. 151–162.

  12. C. Y. Tang and R. C. T. Lee,Optimal speeding up of parallel algorithms based upon divide-and-conquer strategy, Information Sciences, Vol. 32, No. 3 (1984), pp. 173–186.

    Article  Google Scholar 

  13. R. E. Tarjan,Sensitivity analysis of minimal spanning trees and shortest path trees, Information Processing Letters, Vol. 14, No. 1 (1982), pp. 30–33.

    Article  Google Scholar 

  14. G. Voronoi,Nouvelles applications des paramètres continus a la theorie des formes quadratiques, Deuxieme Memoire: Recherches sur les parallelloèdres. Deuxieme angew. Math. Vol. 134 (1908), pp. 198–287.

    Google Scholar 

  15. A. C. Yao,On constructing minimal spanning trees in k-dimensional space and related problems, SIAM Journal on Computing, Vol. 11, No. 4 (1982), pp. 721–736.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was partially supported by the National Science Council of the Republic of China under the Grant NSC74-0408-E007-01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, R.C., Lee, R.C.T. AnO(N logN) minimal spanning tree algorithm forN points in the plane. BIT 26, 7–16 (1986). https://doi.org/10.1007/BF01939358

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01939358

Keywords

Navigation