Skip to main content
Log in

Ventricular pressure-volume relations as the primary basis for evaluation of cardiac mechanics Return to Frank's diagram

  • Editorial
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

Considering ventricular function from the vantage point of the pressure-volume (P-V) diagram permits not only quantification of ventricular working capacity under normal and pathophysiological conditions but also promotes understanding of cardiac dynamics including prediction of the effects of mechanical and pharmacological interventions. Therefore it seems appropriate, at least intellectually, to classify all measured volume and pressure data into the scheme of the P-V diagram. The use of so-called contractility indices and also the restriction to the end-systolic P-V relation alone means deliberate renunciation of important information. In principle, Frank's original concept can be confirmed which, under afterloaded conditions, implies the existence of distinct end-systolic P-V curves each related to a particular end-diastolic volume. As an approximation, however, the assumption of one common end-systolic P-V relation seems tolerable. — Based on Frank's diagram, a concept for assessment of ventricular and myocardial function is presented following a discussion of the determinants of the diastolic and end-systolic P-V relations, as well as the methodological difficulties and different notions with regard to the end-systolic P-V curve. The P-V area between the curves of systolic maxima and diastolic minima, up to a defined end-diastolic pressure, is recommended as a measure for quantitative evaluation of ventricular working capacity. Transformation into stress-length (σ−1) relations is indispensable for assessment of myocardial function under the conditions of changed ventricular geometry. The normalized σ−1 area yields a measure for interindividual evaluation of myocardial working capacity. This concept of evaluation does not mean acknowledgement of the visco-elastic theory of muscle contraction nor of the Emax concept.

The P-V and σ−1 relations must, however, be complemented by time related parameters in order to estimate ventricular and myocardial power capacity.

After a long-lasting search through international literature for “contractility indices” of general applicability and significance it seems appropriate to return to Frank's diagram as the primary basis for evaluating cardiac mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Abbott BC, Aubert XM (1952) The force exerted by active striated muscle during and after change of length. J Physiol 117:77–86

    PubMed  Google Scholar 

  2. Arnold G, Kosche F, Miessner E, Neilzert A, Lochner W (1968) The importance of the perfusion pressure in the coronary arteries for the contractility and the oxygen consumption of the heart. Pflügers Arch 299:339–356

    Article  Google Scholar 

  3. Bauereisen E, Hauck G, Jacob R, Peiper U (1964) Enddiastolische Druck-Volumenrelationen und Arbeitsdiagramme des intakten Herzens im natürlichen Kreislauf in Abhängigkeit von Herzfrequenz, Adrenalinwirkung und Vagusreiz. Pflügers Arch 281:216–230

    Article  Google Scholar 

  4. Bauereisen E, Jacob R, Kleinheisterkamp U, Peiper U, Weigand KH (1965) Enddiastolische Dehnbarkeit des linken Ventrikels bei akuten Änderungen des arteriellen Systemdrucks. Pflügers Arch 285:335–348

    Article  Google Scholar 

  5. Brilla Ch, Kissling G, Jacob R (1987) Significance of right ventricular filling for left ventricular enddiastolic pressure-volume relationship under acute hypoxia in the dog. Basic Res Cardiol 82:109–122

    PubMed  Google Scholar 

  6. Broemser P (1938) Grundlagen der Hämodynamik. Luftfahrtmed Abhandl 2∶5

  7. Brown KA, Ditchey RV (1988) Human right ventricular endsystolic pressure-volume relation defined by maximal elastance. Circulation 78:81–91

    PubMed  Google Scholar 

  8. Brutsaert DL, Claes VA, Sonnenblick EH (1971) Velocity of shortening of unloaded heart muscle and the length-tension relation. Circ Res 29:63–75

    PubMed  Google Scholar 

  9. Brutsaert DL, Paulus WJ (1976) Muscle and pump function of the mammalian heart. In: Roskamm H, Hahn Ch (eds) Ventricular function at rest and during exercise. Springer, Berlin Heidelberg New York, pp 11–16

    Google Scholar 

  10. Burkhoff D, Sugiura S, Yue DT, Sagawa K (1987) Contractility-dependent curvilinearity of end-systolic pressure-volume relation. Amer J Physiol 252: (Heart Circ Physiol 21);H1218-H1227

    PubMed  Google Scholar 

  11. Burton AC (1957) The importance of the shape and size of the heart. Amer Heart J 54:801–810

    Article  PubMed  Google Scholar 

  12. Carabello BA, Spann JF (1984) The uses and limitations of endsystolic indexes of left ventricular function. Circulation 69:1058–1064

    PubMed  Google Scholar 

  13. Cross CE, Rieben RPA, Salisbury PF (1961) Influence of coronary perfusion pressure and edema on pressure-volume diagram of left ventricle. Amer J Physiol 201:102–108

    PubMed  Google Scholar 

  14. Downing SE, Sonnenblick EH (1964) Cardiac muscle mechanics and ventricular performance: force and time parameters. Amer J Physiol 207:705–715

    PubMed  Google Scholar 

  15. Edman KAP (1968) The active state and the force-velocity relation in the cardiac muscle. In: Reindell H, Keul J, Doll E (eds) Herzinsuffizienz. Thieme, Stuttgart, pp 133–138

    Google Scholar 

  16. Elzinga G, Westerhof N (1979) How to quantify pump function of the heart. The value of variables derived from measurements on isolated muscle. Circ Res 44:303–308

    PubMed  Google Scholar 

  17. Frank O (1898) Die Wirkung von Digitalis (Helleborein) auf das Herz. Sitzungsber d Ges f Morphol u Physiol 14:14–43

    Google Scholar 

  18. Frank O (1899) Die Grundform des arteriellen Pulses. Erste Abhandlung. Mathematische Analyse. Z Biol 37:483–526

    Google Scholar 

  19. Freeman GL, Little WC, HO'Rourke RA (1986) The effect of vasoactive agents on the left ventricular end-systolic pressure-volume relation in closed-chest dogs. Circulation 74:1107–1113

    PubMed  Google Scholar 

  20. Friberg P (1987) Myocardial energetics and diastolic dimensions of the heart in experimental hypertension. Basic Res Cardiol 82(Suppl 2):201–214

    PubMed  Google Scholar 

  21. Gehl H, Graf K, Kramer K (1955) Das Druck-Volumdiagramm des Kaltblüterherzens. Pflügers Arch 261:270–294

    Article  Google Scholar 

  22. Grossman W, Braunwald E, Mann T, McLaurin LP, Green LH (1977) Contractile state of the left ventricle in man as evaluated from end-systolic pressure-volume relations. Circulation 56:845–852

    PubMed  Google Scholar 

  23. Gülch RW (1974) A critical analysis of myocardial force-velocity relations obtained from damped quick-release experiments. Basic Res Cardiol 69:32–46

    PubMed  Google Scholar 

  24. Gülch RW (1985) The “endsystolic” length-tension relation in mammalian myocardium. Basic Res Cardiol 80:636–641

    Article  PubMed  Google Scholar 

  25. Gülch RW, Jacob R (1975) Length-tension diagram and force-velocity relations of mammalian cardiac muscle under steady state conditions. Pflügers Arch 355:331–346

    Article  Google Scholar 

  26. Gülch RW, Jacob R (1975) The effect of sudden stretches on length-tension and force-velocity relations of mammalian cardiac muscle. Pflügers Arch 357:335–347

    Article  Google Scholar 

  27. Gülch RW, Jacob R (1985) Geometric and muscle physiological determinants of cardiac stroke volume as evaluated on the basis of model calculations. Basic Res Cardiol 83:476–485

    Google Scholar 

  28. Heinrich H, Fontaine L, Spilker D, Winter H, Ahnefeld EW (1986) Vergleichende echokardiographische Untersuchungen zur negativen Inotropie von Halothan, Enfluran und Isofluran. Anaesthesist 35:465–472

    PubMed  Google Scholar 

  29. Hepp A, Hansis M, Gülch R, Jacob R (1974) Left ventricular isovolumic pressure-volume relations, “diastolic tone”, and contractility in the rat after physical training. Basic Res Cardiol 69:516–532

    PubMed  Google Scholar 

  30. Hild R, Sick L (1955) Das Druck-Volum-Diagramm des isolierten, spontan schlagenden Katzenherzens. Z Biol 107:51–66

    Google Scholar 

  31. Holt JP (1957) Regulation of the degree of emptying of the left ventricle by the force of ventricular contraction. Circ Res 5:281–287

    PubMed  Google Scholar 

  32. Holubarsch Ch, Jacob R (1980) Die “Compliance des Herzens”. Med Welt 31:136–144

    PubMed  Google Scholar 

  33. Jacob R (1968) Druck-Volumen-Zeitbeziehungen im Tierexperiment. In: Reindell H, Keul J, Doll E (eds) Herzinsuffizienz. Thieme, Stuttgart, pp 458–467

    Google Scholar 

  34. Jacob R (1968) Wechselbeziehungen zwischen Volumen und Leistung des linken Ventrikels im akuten Versuch. Ärztl Forsch 22:329–348

    Google Scholar 

  35. Jacob R (1986) Cardiac responses to experimental chronic pressure overload. In: Zanchetti A, Tarazi RC (eds) Handbook of hypertension, vol 7: Pathophysiology of hypertension-cardiovascular aspects. Elsevier Science Publishers BV, pp 59–83

  36. Jacob R, Ebrecht G, Kissling G, Rupp H, Takeda N (1986) Functional consequences of cardiac myosin isoenzyme redistribution. In: Rupp H (ed) Regulation of heart function Thieme, Stuttgart, New York pp 305–326

    Google Scholar 

  37. Jacob R, Gülch R (1972) Kritische Bemerkungen zur Aussagekraft der “Kontraktilitätsindices”. Verh Dtsch Ges Kreislforschg 38:241–246

    Google Scholar 

  38. Jacob R, Gülch RW (1988) Functional significance of ventricular dilatation. Reconsideration of Linzbach's concept of chronic heart failure. Basic Res Cardiol 83:461–475

    PubMed  Google Scholar 

  39. Jacob R, Gülch RW, Holubarsch Ch, Kissling G (1975) Die Bewertung der myokardialen Leistungsfähigkeit. Muskelphysiologische Grundlagen und methodische Probleme. Med Klin 70:1347–1365

    PubMed  Google Scholar 

  40. Jacob R, Gülch R, Kissling G, Raff U (1973) Muskelphysiologische Grundlagen für die Beurteilung der Leistungsfähigkeit des Herzens. Z Ges Inn Med 28:1–11

    PubMed  Google Scholar 

  41. Jacob R, Kissling G (1985) Dynamik des intakten Herzens. In: Brüschke G, Heublein B (eds) Handbuch der Inneren Erkrankungen. Bd 1 (Herz-, Kreislauf- und Gefäßerkrankungen), S 151–188

  42. Jacob R, Kissling G (1981) Left ventricular dynamics and myocardial function in Goldblatt hypertension of the rat. Biochemical, morphological and electrophysiological correlates. In: Strauer BE (ed) The heart in hypertension. Springer, Berlin Heidelberg New York, pp 89–107

    Google Scholar 

  43. Jacob R, Kissling G, Ebrecht G, Holubarsch Ch, Medugorac I, Rupp H (1983) Adaptive and pathological alterations in experimental cardiac hypertrophy. In: Chazov E, Saks V, Rona G (eds) Plenum Publish Corporation. Advanc Myocardiol 4:55–77

  44. Jacob R, Vogt M, Noma K (1987) Chronic cardiac reactions. I. Assessment of ventricular and myocardial work capacity in the hypertrophied and dilated heart. Basic Res Cardiol 82(Suppl 2):137–145

    Google Scholar 

  45. Jacob R, Weigand KH (1966) The end-systolic pressure-volume relations as a basis for evaluation of left ventricular contractility in situ. Arch ges Physiol 289:37–49

    Article  Google Scholar 

  46. Jewell BR, Wilkie DR (1960) The mechanical properties of relaxing muscle. J Physiol (Lond) 152:30–47

    Google Scholar 

  47. Katz AM (1972) The force-velocity curve. Cardiology 57:2–10

    PubMed  Google Scholar 

  48. Katz AM (1988) Influence of altered inotropy and lusitropy on ventricular pressure-volume loops. JACC 11:438–445

    PubMed  Google Scholar 

  49. Katz LN (1963) Recent concepts of the performance of the heart. Circulation 28:117–135

    Google Scholar 

  50. Kaufmann RL, Lab MJ, Hennekes R, Krause H (1971) Feedback interaction of mechanical and electrical events in the isolated mammalian ventricular myocardium (cat papillary muscle). Pflügers Arch 324:100–123.

    Article  Google Scholar 

  51. Kenner T (1982) Das Herz als Pumpe. In: Busse R (ed) Kreislaufphysiologie. Thieme, Stuttgart New York, S 137–166

    Google Scholar 

  52. Kissling G, Gassenmaier T, Wendt-Gallitelli MF, Jacob R (1977) Pressure-volume relations, elastic modulus, and contractile behavior of the hypertrophied left ventricle of rats with Goldblatt II hypertension. Pflügers Arch 369:213–221

    Google Scholar 

  53. Kissling G, Jacob R (1972) Begrenzende Faktoren für die Steigerungsfähigkeit des Schlagvolumens durch positive Inotropie. Pflügers Arch 335:153–166

    Article  Google Scholar 

  54. Kissling G, Malloy L, Rupp H (1983) Energetics of the rat heart in chronic pressure overload. In: Jacob R, Gülch RW, Kissling G (eds) Cardiac adaptation and haemodynamic overload, training and stress. Steinkopff, Darmstadt, pp 167–173

    Google Scholar 

  55. Kissling G, Takeda N, Vogt M (1985) Left ventricular end-systolic pressure-volume relationships as a measure of ventricular performance. Basic Res Cardiol 80:594–607

    PubMed  Google Scholar 

  56. Krayenbühl HP (1967) Kraft-Geschwindigkeitsbeziehung während der isovolumetrischen Phase der linksventrikulären Systole beim Hund (Ganztier). Helv Physiol Pharmacol Acta 25:CR200–202

    PubMed  Google Scholar 

  57. Kronenberg MW, Parish MD, Parish MD, Jenkins DW, Sandler MP, Friesinger GC (1985) Accuracy of radionuclide ventriculography for estimation of left ventricular volume changes and endsystolic pressure-volume relations. J Am Cell Cardiol 6:1064–1072

    Google Scholar 

  58. Linzbach AJ (1960) Heart failure from the point of view of quantitative anatomy. Am J Cardiol 5:370–382

    Article  PubMed  Google Scholar 

  59. Magorien DJ, Schaffer P, Bush CA, Magorien RD, Kolibash AJ, Leier CV, Bashore TM (1983) Assessment of left ventricular pressure-volume relations using gated radionuclide angiography, echocardiography, and micromanometer pressure recordings: A new method for serial measurements of systolic and diastolic function in man. Circulation 67:844–853

    PubMed  Google Scholar 

  60. Maisch B, Gülch RW, Jacob R (1975) Dehnungs- und entdehnungsinduzierte Änderungen im passiven und aktiven Verhalten des isolierten Katzenpapillarmuskels. Basic Res Cardiol 70:256–267

    PubMed  Google Scholar 

  61. Maughan WL, Sunagawa K, Burkhoff D, Graves WL, Hunter WC, Sagawa K (1985) Effect of heart rate in the canine end-systolic pressure-volume relationship. Circulation 72:654–659

    PubMed  Google Scholar 

  62. Maughan WL, Sunagawa K, Burkhoff D, Sagawa K (1984) The effect of arterial impedance changes on the end-systolic pressure-volume relation. Circ Res 54:595–602

    PubMed  Google Scholar 

  63. McKay RG, Aroesty JM, v Heller G, Royal A, Parker A, Silverman KJ, Kolodny GM, Grossman W (1984) Left ventricular pressure-volume diagrams and end-systolic pressure-volume relations in human beings. JACC 3: 301–312

    PubMed  Google Scholar 

  64. McKay RG, Spears JR, Aroesty JM, Baim DS, Royal HD, Heller GV, Lincoln W, Salo RW, Braunwald E, Grossman W (1984) Instantaneous measurement of left and right ventricular stroke volume and pressure-volume relationships with an impedance catheter. Circulation 69:703–710

    PubMed  Google Scholar 

  65. Mehmel HC, Schwarz F, Ruffmann K, Manthey J, von Olshausen K, Kübler W (1983) End-systolic pressure-volume and end-systolic stress-volume relationships in patients with aortic stenosis and with normal valvular function. Basic Res Cardiol 78:338–350

    Article  PubMed  Google Scholar 

  66. Mirsky I, Parmely WW (1974) Evaluation of passive elastic stiffness for left ventricle and isolated heart muscle. In: Mirsky I, Ghista DN, Sandler H (eds) Cardiac mechanics. John Wiley & Sons Inc, New York London Sydney Toronto, pp 331–358

    Google Scholar 

  67. Mirsky J, Tajmi T, Peterson KL (1987) The development of the entire endsystolic pressure-volume and ejection fraction afterload relations: a new concept of systolic myocardial stiffness. Circulation 76:343–356

    PubMed  Google Scholar 

  68. Monroe RG, French GN (1961) Left ventricular pressure-volume relationships and myocardial oxygen consumption in the isolated heart. Circ. Res 9:362–374

    PubMed  Google Scholar 

  69. Noble MJM (1972) Problems concerning the application of concepts of muscle mechanics to the determination of the contractile state of the heart. Circulation 45:252–255

    PubMed  Google Scholar 

  70. Noma K, Brändle M, Jacob R (1987) Evaluation of left ventricular function in an experimental model of congestive heart failure due to combined pressure and volume overload. Basic Res Cardiol 82:209–215

    Article  Google Scholar 

  71. Parmley WW (1976) Measurements of contractility during acute myocardial infarction and other stress. In: Roskamm H, Hahn Ch (eds) Ventricular function at rest and during exercise. Springer, Berlin Heidelberg New York, pp 31–34

    Google Scholar 

  72. Parmley WW, Chuck L (1973) Length-dependent changes in myocardial contractile state. Amer J Physiol 224:1195–1199

    PubMed  Google Scholar 

  73. Raff U, Stauber W, Kissling G (1974) Die Bedeutung des Quotienten dP/dtmax/IP für die Beurteilung der Leistungsfähigkeit des Herzens. Z Kardiol 63:1127–1134

    PubMed  Google Scholar 

  74. Reichel H (1939) Die Beziehungen zwischen Länge und Spannung Volumen und Druck des Herzmuskels. Z Biol 99:63–79

    Google Scholar 

  75. Rohde E, Usui R (1914) Beiträge zur Dynamik des Froschherzens. Z Biol 64:409–440

    Google Scholar 

  76. Ross J, Covell JW, Sonnenblick EH, Braunwald E (1966) Contractile state of the heart characterized by force-velocity relations invariably afterloaded and isovolumic beats. Circ Res 18:149–163

    Google Scholar 

  77. Sagawa K (1978) The ventricular pressure-volume diagram revisited. Circ Res 43:677–687

    PubMed  Google Scholar 

  78. Sagawa K (1981) The end-systolic pressure-volume relations of the ventricle definition, modifications and clinical use. Circulation 63:1223–1227

    PubMed  Google Scholar 

  79. Salisbury PF (1962) Left ventricular distensibility and contractile tension influenced by coronary and interstitial pressure and volumes. Proc Internat Un Physiol Sci Vol I, 22. Internat Congress, Leiden, Part I, p 130

    Google Scholar 

  80. Sarnoff SJ, Mitchell JH, Gilmore JP, Remensnyder JP (1960) Homeometric autoregulation in the heart. Circ Res 8:1077–1091

    PubMed  Google Scholar 

  81. Schiereck KP, Kil PJM, deBeer EL, Nieuwenhuijs JHM, Van Kaam FAM, Crowe A (1986) The effect of controlled changes in volume on the active state of the rabbit isolated left ventricle. Basic Res Cardiol 81:517–528

    PubMed  Google Scholar 

  82. Sonnenblick EH (1962) Force-velocity relations in mammalian heart muscle. Amer J Physiol 202:931–939

    PubMed  Google Scholar 

  83. Sonnenblick EH, Brutsaert DL (1972) Vmax: Its relation to contractility of heart muscle. Cardiology 57:11–15

    PubMed  Google Scholar 

  84. Spratt JA, Tyson GS, Glower DD, Davis JW, Muhlbaier LH, Olsen CO, Rankin JS (1982) The end-systolic pressure-volume relationship in conscious dogs. Circulation 75:1295–1309

    Google Scholar 

  85. Straub H (1917) Das Arbeitsdiagramm des Säugerherzens. Pflügers Arch 169:564–594

    Article  Google Scholar 

  86. Suga H (1971) Left ventricular time-varying pressure/volume ratio in systole as an index of myocardial inotropism. Jap Heart J 12:153–160

    PubMed  Google Scholar 

  87. Suga H, Igarashi Y, Yamada O, Goto Y (1986) Cardiac oxygen consumption and systolic pressure-volume area. Basic Res Cardiol 81(Suppl 1):39–50

    PubMed  Google Scholar 

  88. Suga H, Kitabatake A, Sagawa K (1979) End-systolic pressure determines stroke volume from fixed end-diastolic volume in the isolated canine left ventricle under a constant contractile state. Circ Res 44:238–249

    PubMed  Google Scholar 

  89. Suga H, Sagawa K, Shoukas AA (1973) Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 32:314–322

    PubMed  Google Scholar 

  90. Suga H, Yamakoshi K (1977) Effects of stroke volume and velocity of ejection on end-systolic pressure of canine left ventricle: End-systolic volume clamping. Circ Res 40:445–450

    PubMed  Google Scholar 

  91. Sugawara M (1986) Interrelationship between endsystolic pressure-volume and stress-strain relations. Heart and Vessels 2:65–66

    PubMed  Google Scholar 

  92. Taylor RR (1970) Active length-tension relations compared in isometric afterloaded and isotonic contractions of cat papillary muscle. Circ Res 26:279–288

    PubMed  Google Scholar 

  93. Taylor RR, Covell JW Ross J Jr (1969) Volume-tension diagrams of ejecting and isovolumic contractions in left ventricle. Am J Physiol 216(5):1097–1102

    PubMed  Google Scholar 

  94. Thormann J, Kramer W, Kindler M, Kremer P, Schlepper M (1987) Bestimmung der Wirkungskomponenten von Amrinon durch kontinuierliche Analyse von Druck-Volumen-Beziehungen; Anwendung der Conductance-(Volumen-)Kathetertechnik und der schnellen Laständerung durch Ballonokklusion der Vena cava. Z Kardiol 76:530–540

    PubMed  Google Scholar 

  95. Ullrich KJ, Riecker G, Kramer K (1954) Das Druckvolumdiagramm des Warmblüterherzens. Isometrische Gleichgewichtskurven. Pflügers Arch 259:481–498

    Article  Google Scholar 

  96. Unterberg RF, Kärfer R, Döblitz B, Schmicl FK, Spiller J (1984) Assessment of ventricular function by a power index: an intraoperative study. Basic Res Cardiol 79:423–431

    PubMed  Google Scholar 

  97. Vogt M, Jacob R (1985) Myocardial elasticity and left ventricular distensibility as related to oxygen deficiency and right ventricular filling. Analysis in a rat heart model. Basic Res Cardiol 80:537–547

    PubMed  Google Scholar 

  98. Vogt M, Jacob R, Kissling G, Rupp H (1987) Chronic cardiac reactions. II. Mechanical and energetic consequences of myocardial transformation versus ventricular dilatation in the chronically pressure-loaded heart. Basic Res Cardiol. 82(Suppl 2):147–159

    PubMed  Google Scholar 

  99. Weber KT, Janicki JS, Hefner LL (1976) Left ventricular force-length relations of isovolumic and ejecting contractions. Amer J Physiol 231:337–343

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. K. Spang, Stuttgart, on the occasion of his 80th birthday

Supported by the Deutsche Forschungsgemeinschaft (Ja 172/14-1)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, R., Kissling, G. Ventricular pressure-volume relations as the primary basis for evaluation of cardiac mechanics Return to Frank's diagram. Basic Res Cardiol 84, 227–246 (1989). https://doi.org/10.1007/BF01907971

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01907971

Key words

Navigation