Skip to main content
Log in

New mechanisms for positive inotropic agents: Focus on the discovery and development of imazodan

  • New Cardiovascular Drug Section
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

Intense efforts during the last decade to identify a useful positive inotropic agent to replace digitalis for the treatment of congestive heart failure have led to the discovery of several dozen potential substitutes, of which a number are currently undergoing clinical trials. In addition to producing a variety of new therapeutic entities, research in this area has also yielded valuable new information regarding the fundamental events that regulate calcium homeostatis and contractile function in the cardiac cell. For example, several of these new inotropic agents, including the calcium-channel stimulator BAY-k 8644, the sodium-channel stimulator DPI-201-186, and the sodium-calcium exchange inhibitor dichlorobenzamil, have provided considerable insight into the role of sodium and calcium in regulating contractility and the molecular events that mediate potential-dependent ion channels. Likewise, the discovery and development of agents like imazodan, amrinone, enoximone, and other selective type III phosphodiesterase inhibitors have provided new information regarding multiple molecular forms of cyclic nucleotide phosphodiesterase, compartmentation of cyclic AMP, and the importance of soluble vs. membrane-bound phosphodiesterases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Withering W.An Account of the Foxglove and Some of its Uses: With Practical Remarks on Dropsy and Other Diseases. C.G.J. and J. Robinson, 1985.

  2. Lukas DS. Of toads and flowers.Circulation 1972;46:1–4.

    Google Scholar 

  3. Hamer J. The paradox of the lack of efficacy of digitalis in congestive heart failure with sinus rhythm.Br J Clin Pharmacol 1979;8:109–113.

    PubMed  Google Scholar 

  4. Smith TW. Digitalis: Mechanism of action and clinical use.N Engl J Med 1988;318:358–365.

    PubMed  Google Scholar 

  5. Ringer S. A third contribution regarding the influence of the inorganic constituents of the blood on ventricular contraction.J Physiol (Lond) 1883;4:222–225.

    Google Scholar 

  6. Gibbons WR. Cellular control of cardiac contraction. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE, eds.The Heart and Cardiovascular System: Scientific Foundations. New York: Raven Press, 1986;747.

    Google Scholar 

  7. Carafoli F. The homeostasis of calcium in heart cells.J Mol Cell Cardiol 1985;17:203–212.

    PubMed  Google Scholar 

  8. Fabiato A, Fabiato F. Calcium release from the sarcoplasmic reticulum.Circ Res 1977;40:119–129.

    PubMed  Google Scholar 

  9. Crompton M, Künzi M, Carafoli E. The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria. Evidence for a sodium calcium carrier.Eur J Biochem 1977;79:549–558.

    PubMed  Google Scholar 

  10. Mullins LJ. The generation of electric currents in cardiac fibers by Na/Ca exchange.Am J Physiol 1979;236:C103-C110.

    PubMed  Google Scholar 

  11. Hitchock, SE, Huxley HE, Szent-Györeyi AE. Calcium sensitive binding of troponin to actin-tropomyosin: A two-site model for troponin action.J Mol Biol 1973;80:825–836.

    PubMed  Google Scholar 

  12. Weishaar RE, Kobylarz-Singer DC, Quade MM, Kaplan HR: Role of cyclic AMP in regulating cardiac muscle contractility: Novel pharmacological approaches to modulating cyclic AMP degradation by phosphodiesterase.Drug Devel Res 1988;12:119–129.

    Google Scholar 

  13. Katz, AM. Role of the contractile proteins and sarcoplasmic reticulum in the response of the heart to catecholamines: A historical review.Adv Cyclic Nucleotide Res 1979;11:303–340.

    PubMed  Google Scholar 

  14. Drummond GE, Severson DL. Cyclic nucleotides and cardiac function.Circ Res 1979;44:145–153.

    PubMed  Google Scholar 

  15. Tsien RW. Cyclic AMP and contractile activity in heart.Adv Cyclic Nucleotide Res 1977;8:363–420.

    PubMed  Google Scholar 

  16. Schneider JA, Sperelakis N. Slow Ca2+ and Na+ responses induced by isoproterenol and methylxanthines in isolated perfused guinea pig hearts exposed to elevated K+.J Mol Cell Cardiol 1975;7:249–273.

    PubMed  Google Scholar 

  17. Skou JC. Enzymatic basis for active transport of Na+ and K+ across cell membranes.Physiol Res 1965;45:496–617.

    Google Scholar 

  18. Schwartz A, Allen JC, Harigaya S. Possible involvement of cardiac Na+,K+-adenosine triphosphatase in the mechanism of action of cardiac glycosides.J Pharmacol Exp Ther 1969;168:31–41.

    PubMed  Google Scholar 

  19. Brody TM, Akera T. Relations among sodium, potassium-ATPase activity, sodium pump activity, transmembrane sodium movement, and cardiac contractility.Fed Proc 1977;36:2219–2224.

    PubMed  Google Scholar 

  20. Langer GA, Serena SD. Effects of strophanthidin upon contraction and ionic exchange in rabbit ventricular myocardium: Relation to control of active state.J Mol Cell Cardiol 1970;1:65–90.

    PubMed  Google Scholar 

  21. Greenspan AM, Morand M. Electro-mechanical studies on the inotropic effects of acetyl strophanthidin in ventricular muscle.J Physiol (Lond.) 1975;253:357–384.

    Google Scholar 

  22. McDonald TF, Nawrath J, Trautwein W. Membrane currents and tension in cardiac ventricular muscle treated with cardiac glycosides.Circ Res 1975;253:657–682.

    Google Scholar 

  23. Haleen SJ, Steffen RP, Sircar I, Major TC, Taylor MD, Weishaar RE. PD 122,860: A novel dihydropyridine with sodium channel stimulating and calcium channel blocking properties. Submitted for publication.

  24. Evans DB, Weishaar RE, Kaplan HR. Strategy for the discovery and development of a positive inotropic agent.Pharmacol Ther 1982;16:303–330.

    PubMed  Google Scholar 

  25. Taylor MD, Sircar I, Steffan RP. Agents for the treatment of congestive heart failure.Annual Reports in Medicinal Chemistry 1987;22:85–94.

    Google Scholar 

  26. Schramm M, Thomas G, Toward R, Franckowiak G. Activation of calcium channels by novel 1,4-dihydropyridines: A new mechanism for positive inotropics or smooth muscle stimulants.Arzneim-Forsch 1983;33:1268–1272.

    Google Scholar 

  27. Schramm M, Thomas E, Towart R, Franckowiak G. Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels.Nature 1983;303:535–537.

    PubMed  Google Scholar 

  28. Hess P, Lansman JB, Nilius B, Tsien RW. Calcium channel types in cardiac myocytes: Modulation by dihydropyridines and beta-adrenergic stimulants.J Cardiovasc Pharmacol 1986;8(Suppl 9):511–521.

    Google Scholar 

  29. Montiel C, Artalejo AR, Garcia AG. Effects of the novel dihydropyridine BAY-k 8644 on adrenomedullary catecholamine release evoked by calcium reintroduction.Biochem Biophys Res Comm 1984;120:851–857.

    PubMed  Google Scholar 

  30. Schwartz A, Lewis RM, Hanley HG, Munson RG, Dial FD, Ray MB. Hemodynamic and biochemical effects of a new positive inotropic agent.Circ Res 1974;34:102–111.

    Google Scholar 

  31. Kaufmann AJ, Richards DE, Russell DA. Inhibition of the sodium pump by cardioactive DPI 201-106.Br J Pharmacol 1987;91:3–5.

    PubMed  Google Scholar 

  32. Romey G, Quast U, Paurov D, Freun C, Renaud JF, Lazdunski M. Na+ channels as sites of action of the cardioactive agent DPI 201-106 with agonist and antagonist enantiomers.Proc Natl Acad Sci. USA 1987;84:896–900.

    PubMed  Google Scholar 

  33. Siegl PKS, Cragoe EJ, Trumble MJ, Kaczorowski GJ. Inhibition of Na+/Ca2+ exchange in membrane vesicle and papillary muscle preparations from guinea pig heart by analogues of amiloride.Proc Natl Acad Sci. USA 1984;81:3238–3242.

    PubMed  Google Scholar 

  34. Saini RK, Hester RK, Somani P, Pressman RC. Characterization of the coronary vasodilator and hemodynamic actions of monensin, a carboxylic ionophore.J Cardiovasc Pharmacol 1979;1:123–138.

    PubMed  Google Scholar 

  35. Lindner E, Metzger H. The action of forskolin on muscle cells is modified by hormones, calcium ions and calcium antagonists.Arzneim-Forsch 1983;33:1436–1431.

    Google Scholar 

  36. Evans DB, Parham DS, Schenck MT, Laffan RJ. Stimulation of myocardial contractility by a new cyclic nucleotide analogue, 8-(benzylthio)-N6-n-butyladensoine cyclic 3′, 5′-phosphate (SQ 80122).J Cyclic Nucleotide Res 1976;2:307–319.

    PubMed  Google Scholar 

  37. Weishaar RE, Cain MH, Bristol JA. A new generation of phosphodiesterase inhibitors: Multiple molecular forms of phosphodiesterase and the potential for drug selectivity.J Med Chem 1985;28:537–545.

    PubMed  Google Scholar 

  38. Solaro RJ, Rüegg JC. Stimulation of Ca2+ binding and ATPase activity of dog cardiac myofibrils by AR-L115BS, a novel cardiotonic agent.Circ Res 1982;51:290–294.

    PubMed  Google Scholar 

  39. Scholz H. Inotropic drugs and their mechanisms of action.J Am Coll Cardiol 1984;4:389–397.

    PubMed  Google Scholar 

  40. Rüegg JC. Effects of new inotropic agents on Ca++ sensitivity of contractile proteins.Circulation 1986;73(Suppl III):III78-III84.

    PubMed  Google Scholar 

  41. Bean BP, Sturek M, Puga A, Hermsmeyer K. Calcium channels in muscle cells isolated from rat mesenteric arteries: Modulation by dihydropyridine drugs.Circ Res 1986;59:229–235.

    PubMed  Google Scholar 

  42. Packer M. Vasodilators and inotropic therapy for severe chronic heart failure: Passion and skepticism.J Am Coll Cardiol 1983;2:841–852.

    PubMed  Google Scholar 

  43. The CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. N Engl J Med 1987;316:1429–1435.

    Google Scholar 

  44. Honerjäger P. Cardioactive substances that prolong the open state of sodium channels.Rev Physiol Biochem Pharmacol 1982;92:1–74.

    PubMed  Google Scholar 

  45. Norton TR. Cardiotonic polypeptides fromAnthopleura xanthogrammica (Brandt) andA. elegantissima (Brandt).Fed Proc 1981;40:21–25.

    PubMed  Google Scholar 

  46. Hashimoto K, Ochi R, Hashimoto K, Inui J, Miura Y. The ionic mechanism of prolongation of action potential duration of cardiac ventricular muscle by anthopleurin-A and its relationship to the inotropic effect.J Pharmacol Exp Ther 1980;215:479–485.

    PubMed  Google Scholar 

  47. Barchi RL. Probing the molecular structure of the voltage-dependent sodium channel.Ann Rev Neurosci 1988;11:455–495.

    PubMed  Google Scholar 

  48. Haleen SJ, Steffen RP, Weishaar RE. Species differences in the positive inotropic response to DPI201-106. Submitted for publication.

  49. Hof RP, Hof A. Mechanism of the vasodilator effects of the cardiotonic agent DPI 201-106.J Cardiovasc Pharmacol 1985;7:1188–1192.

    PubMed  Google Scholar 

  50. From AHL, Francis GS, Pierpont GL, Petein M. DPI 201-106: A novel inotropic agent (abstract).Circulation 1984;70(Suppl II):167.

    Google Scholar 

  51. Siegl PKS, Garcia ML, King VF, Kaczorowski GJ. Interaction of the inotropic stimulant, DPI 201-106, with cardiac calcium channels (abstract)Fed Proc 1987;46:372.

    Google Scholar 

  52. Kostis JB, Lacy CR, Raia JJ, Dworkin JH, Warner RG, Casazza LA. DPI-201-106 for severe congestive heart failure.Am J Cardiol 1987;60:1334–1339.

    PubMed  Google Scholar 

  53. Herzig JW, Feile K, Rüegg JC. Activating effects of AR-L 115BS on the Ca++ sensitive force, stiffness, and unloaded shortening velocity (Vmax) in isolated contractile structures from mammalian heart muscle.Arzneim Forsch 1981; 31:188–191.

    Google Scholar 

  54. Rüegg JC. Effects of new inotropic agents on Ca++ sensitivity of contractile proteins.Circulation 1986;73(Suppl III): III78-III84.

    PubMed  Google Scholar 

  55. Herzig JW, Gerber W, Salzmann R. Heart failure and Ca++ activation of the cardiac contractile system: Hereditary cardiomyopathy in hamsters (B10 14-6), isoprenaline overload and the effect of APP 201-533.Basic Res Cardiol 1987;82:326–340.

    PubMed  Google Scholar 

  56. Weishaar RE, Burrows SD, Kim SN, Kobylarz-Singer DC, Andrews LK, Quade MM, Overhiser R, Kaplan HR. Protection of the failure heart: Comparative effects of chronic administration of digitalis and diltiazem on myocardial metabolism in the cardiomyopathic hamster.J Appl Cardiol 1987;2:339–360.

    Google Scholar 

  57. Kitada Y, Narimatsu A, Matsumura N, Endo M. Contractile proteins: Possible targets for the cardiotonic action of MCI-154, a novel cardiotonic agent.Eur J Pharmacol 1987; 134:229–231.

    PubMed  Google Scholar 

  58. Freund P, Müller-Beckman B, Strein K, Fling L, Rüegg JC. Ca2+-sensitizing effect of BM 14.478 on skinned cardiac fibers of guinea pig papillary muscle.Eur J Pharmacol 1987;136:243–246.

    PubMed  Google Scholar 

  59. Scholtysik G, Salzmann G, Berthold R, Herzig JW, Quast U, Markstein R. DPI-201-106, a novel cardiotonic agent. Combination of cAMP-independent positive inotropic, negative chronotropic action potential prolonging and coronary dilatory properties.Naunyn-Schmiedeberg's Arch Pharmacol 1985;329:316–325.

    Google Scholar 

  60. Kaumann AJ, Richards DE, Russell DA. Inhibition of the sodium pump by cardioactive DPI-201-106.Br J Pharmacol 1987;91:3–5.

    PubMed  Google Scholar 

  61. Weishaar RE, Quade M, Boyd D, Schenden J, Marks S, Kaplan HR. The effects of several “new and novel” cardiotonic agents on key subcellular processes involved in the regulation of myocardial contractility.Drug Devel Res 1983;3:517–534.

    Google Scholar 

  62. Berger C, Meyer W, Scholz H, Starbatty J. Effects of the benzimidazole derivatives pimobendan and 2-(4-hydroxyphenyl)-5-(5-methyl-3-oxo-4,5-dihydro-2H-6-pyridazinyl) benzimidazole-HC1 on phosphodiesterase activity and force of contraction in guinea pig hearts.Arzneim Forsch 1985; 35:1668–1673.

    Google Scholar 

  63. Diederan W, Weisenberger H. Studies on the mechanism of the positive-inotopic action of AR-L 115BS, a new cardiotonic drug.Arzeim Forsch 1982;31:177–182.

    Google Scholar 

  64. Solaro RJ, Bousquet P, Johnson JD. Stimulation of cardiac myofilament force, ATPase activity and troponin C Ca++ binding by bepridil.J Pharmacol Exp Therap 1986;238:502–507.

    Google Scholar 

  65. Silver PJ, Pinto PB, Dachiw J. Modulation of vascular and cardiac contractile protein regulatory mechanisms by calmodulin inhibitors and related compounds.Biochem Pharmacol 1986;35:2545–2551.

    PubMed  Google Scholar 

  66. Evans DB, Burmeister WE, Eldon CM, McNish RW, Potoczak RE, Schenden JA, Steffen RP, Kaplan HR. Cardiovascular effects of the new cardiotonic, CI-914 (abstract)Pharmacologist 1983;25:550.

    Google Scholar 

  67. Evans DB, Potoczak RE, Steffen RP, Burmeister WE, McNish RW, Schenden JA, Kaplan HR. Cardiovascular pharmacology of the cardiotonic, imazodan (CI-914).Drug Devel Res 1986;9:143–157.

    Google Scholar 

  68. Weishaar RE, Quade M, Schenden JA, Boyd DK, Kaplan HR. Studies aimed at elucidating the mechanism of action of CI-914, a new cardiotonic agent.Eur J Pharmacol 1985;119:205–215.

    PubMed  Google Scholar 

  69. Honerjäger PM, Reiter M, Baker PF. Inhibition of the sodium pump in squid axons by the cardioactive drug AR-L 57.Mol Pharmacol 1980;17:350–355.

    PubMed  Google Scholar 

  70. Thompson WJ, Terasaki WL, Epstein PN, Strada SJ. Assay of cyclic nucleotide phosphodiesterase and resolution of multiple molecular forms of the enzyme.Adv Cyclic Nucleotide Res 1979;10:69–92.

    PubMed  Google Scholar 

  71. Weishaar RE, Quade MM, Schenden JA, Evans DB. Relationship between inhibition of cardiac muscle phosphodiesterases, changes in cyclic nucleotide levels and contractile response for CI-914 and other novel cardiotonics.J Cyclic Nucleotide Protein Phos Res 1985;10:551–564.

    Google Scholar 

  72. Kobylarz DC, Steffen RP, Weishaar RE, Evans DB. Relationship between inhibitors of ventricular peak III phosphodiesterase and the in vivo effect of CI-914 in several species (abstract).Pharmacologist 1985;27:683.

    Google Scholar 

  73. Siegl P, Morgan G, Bohn D, Tonkonoh N, Bull H. Novel cardiotonic agents: Role for phosphodiesterase (PDE) inhibition in inotropic and chronotropic actions (abstract).Circulation 1985;72(Suppl III):III1244.

    Google Scholar 

  74. Schwartz A, Grupp I, Grupp G, Johnson C, Berner P, Wallick E, Imai K, Alousi A. Amrinone: A new inotropic agent, studies on organelle systems (abstract).Circulation 1979;60:16.

    PubMed  Google Scholar 

  75. Alousi AA, Farah AE. Letter to the editor.Circ Res 1980;46:887–888.

    PubMed  Google Scholar 

  76. Weishaar RE, Kobylarz-Singer DC, Kaplan HR. Subclasses of cyclic AMP phosphodiesterase in cardiac muscle.J Mol Cell Cardiol 1987;19:1025–1036.

    PubMed  Google Scholar 

  77. Weishaar RE, Kobylarz-Singer DC, Steffen RP, Kaplan HR. Subclasses of cyclic AMP-specific phosphodiesterase in left ventricular muscle and their involvement in regulating myocardial contractility.Circ Res 1987;61:539–547.

    PubMed  Google Scholar 

  78. Kaufmann RF, Crowe VG, Utterback BG, Robertson DW. LY195115: A potent, selective inhibitor of cyclic nucleotide phosphodiesterase located in the sarcoplasmic reticulum.Mol Pharmacol 1986;30:609–619.

    PubMed  Google Scholar 

  79. Steffen RP, Weishaar, RE, Evans DB, Kaplan HR. Imazodan (CI-914). In: A. Scriabine, ed.New Cardiovascular Drugs. New York: Raven Press, 1986;81.

    Google Scholar 

  80. Webb RC, Bohr DF. Relaxation of vascular smooth muscle by isoproterenol, dibutryl cyclic AMP and theophylline.J Pharmacol Exp Ther 1981;217:26–35.

    PubMed  Google Scholar 

  81. Steffen RP, Eldon CM, Evans DB. The effect of the cardiotonic CI-914 on myocardial and peripheral hemodynamics in the anesthetized dog.J Cardiovasc Pharmacol 1986;8:520–526.

    PubMed  Google Scholar 

  82. Hartmann A, Saeed M, Sutsch G, Bing RJ. Effect of a new phosphodiesterase type III inhibitor as a coronary vasodilator and positive inotropic agent.Cardiovasc Res 1987;21:593–600.

    PubMed  Google Scholar 

  83. Terris S, Bourdillon PDV, Cheng D, Lattis J, Olsen S, Nicklas J, Pitt B. Effects of CI-914 in congestive heart failure due to coronary artery disease or idiopathic cardiomyopathy.Am J Cardiol 1986;58:596–600.

    PubMed  Google Scholar 

  84. Jafri SM, Burlew BS, Goldberg AD, Rogers A, Goldstein S. Hemodynamic effects of a new type III phosphodiesterase inhibitor (CI-914) for congestive heart failure.Am J Cardiol 1986;57:254–259.

    PubMed  Google Scholar 

  85. Packer M, Medina N, Yushak M, Meller J. Hemodynamic patterns of response during long-term therapy for severe chronic heart failure.Circulation 1983;60:803–812.

    Google Scholar 

  86. Likoff MJ, Spielman SR. Mortality and the patient with chronic congestive heart failure.Cardiovasc Reviews and Reports 1985;6:1310–1312.

    Google Scholar 

  87. DiBianco R, Shabetai R, Silverman BD, Leier CV, Benotti JR. Amrinone Multi-Center Study. Investigators: Oral amrinone for the treatment of chronic congestive heart failure: Results of a multi-center double-blind and placebocontrolled withdrawal study.J Am Coll Cardiol 1984;4:855–866.

    PubMed  Google Scholar 

  88. Packer M, Medina N, YuShak M. Hemodynamic and clinical limitations of long-term inotropic therapy with amrinone in patients with severe chronic heart failure.Circulation 1984;70:1038–1047.

    PubMed  Google Scholar 

  89. Simonton C, Daly P, Kereiakes D, Sata H, Parmley W, Chatterjee K. Survival in severe congestive heart failure patients treated with the new non-glycosidic, non-sympathomimetic oral inotropic agents (abstract)Circulation 1984;70:673.

    Google Scholar 

  90. Uretsky BF, Valdes AM, Generalovich T, Reddy PS. Chronic MDL 17,043 therapy in patients with severe heart failure (abstract).Circulation 1984;70:674.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weishaar, R.E., Kobylarz-Singer, D. & Klinkefus, B.A. New mechanisms for positive inotropic agents: Focus on the discovery and development of imazodan. Cardiovasc Drug Ther 3, 29–42 (1989). https://doi.org/10.1007/BF01881527

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01881527

Key Words

Navigation