Skip to main content
Log in

Methods for the study of liver cell heterogeneity

  • Review
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

A large number of histological, histochemical and biochemical techniques are available for studying liver cell heterogeneity. Structural differences are recognized by morphometric analyses of electron micrographs. The zonal heterogeneity of enzyme activities can be demonstrated by histochemistry and more precisely by ultramicrobiochemical assays in microdissected periportal and perivenous tissue. Immunohistochemistry is useful for quantifying and localizing proteins, especially isoenzymes, without depending on their biological activity. The zonal quantification of specific mRNA can be achieved byin situ hybridization. The different structural and enzymic equipment of periportal and perivenous tissue found by these techniques has led to the concept of metabolic zonation. This hypothesis can be confirmed by determination of metabolic rates in perfused liver after selective zonal damage, in separated periportal and perivenous hepatocytes as well as in periportal and perivenous tissue of perfused liver by non-invasive techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ANDERSEN, B., NATH, A. & JUNGERMANN, K. (1982) Heterogeneous distribution of phosphoenolpyruvate carboxykinase in rat liver parenchyma, isolated and cultured hepatocytes.Eur. J. Cell. Biol. 28, 47–53.

    Google Scholar 

  • ASADA-KUBOTA, M., KANAI, K. & KANAMURA, S. (1982) Development of ultrastructural heterogeneity among hepatocytes in the mouse.Anat. Rec. 202, 395–405.

    Google Scholar 

  • BARAONA, E., JAUHONEN, P., MIYAKAWA, H. & LIEBER, C. S. (1983) Zonal redox changes as a cause of selective perivenular hepatotoxicity of alcohol.Pharmacol. Biochem. Behav. 18, Suppl. 1., 449–54.

    Google Scholar 

  • BARON, J., REDICK, J. A. & GUENGERICH, F. P. (1978) Immunohistochemical localization of cytochromeP—450 in rat liver.Life Sci. 23, 2627–32.

    Google Scholar 

  • BARON, J., REDICK, J. A. & GUENGERICH, F. P. (1980) Immunohistochemical localization of epoxide hydratase in rat liver.Life Sci. 26, 489–93.

    Google Scholar 

  • BARON, J., REDICK, J. A. & GUENGERICH, F. P. (1981) An immunohistochemical study on the localizations and distributions of phenobarbital- and 3-methylcholan-threne-inducible cytochromesP-450 within the livers of untreated rats.J. Biol. Chem. 256, 5931–7.

    Google Scholar 

  • BARON, J., REDICK, J. A. & GUENGERICH, F. P. (1982) Effects of 3-methylcholanthrene, β-naphthoflavone and phenobarbital on the 3-methylcholanthrene-inducible isoenzyme of cytochromeP-450 within centrilobular, midzone and periportal hepatocytes.J. Biol. Chem. 257, 953–7.

    Google Scholar 

  • BAUMGARTNER, U., MIYAI, K. & HARDISON, G. M. (1986) Greater taurodeoxycholate biotransformation during backward perfusion of rat liver.Am. J. Physiol. G431–5.

  • BELINSKY, S. A., BADR, M. Z., KAUFFMAN, F. C. & THURMAN, R. G. (1986) Mechanism of hepatotoxicity in periportal regions of the liver lobule due to allyl alcohol: studies on thiols and energy status.J. Pharmacol. Exp. Ther. 238, 1132–7.

    Google Scholar 

  • BELINSKY, S. A., BRADFORD, B. U., FORMAN, D. T., GLASSMAN, E. B., FELDER, M. R. & THURMAN, R. G. (1985) Hepatotoxicity due to allyl alcohol in deermice depends on alcohol dehydrogenase.Hepatology 5, 1179–82.

    Google Scholar 

  • BELINSKY, S. A., KAUFFMAN, F. C., JI., S., LEMASTERS, J. J. & THURMAN, R. G. (1981) Stimulation of mixed-function oxidation of 7-ethoxycoumarin in periportal and pericentral regions of the perfused rat liver by xylitol.Eur. J. Biochem. 137, 1–6.

    Google Scholar 

  • BENGTSSON, G., KIESSLING, K. H., SMITH-KIELLAND, A. & MORLAND, J. (1981) Partial separation and biochemical characteristics of periportal and perivenous hepatocytes from rat liver.Eur. J. Biochem. 118, 591–7.

    Google Scholar 

  • BERNUAU, D., POLIARD, A., TOURNIER, I., SALA-TREPAT, J. & FELDMANN, G. (1985) All hepatocytes are involved in the expression of the albumin gene in the normal adult rat.Cell. Biol. Int. Rep. 9, 31–42.

    Google Scholar 

  • BERRY, M. N. & FRIEND, D. S. (1969) High-yield preparation of isolated rat liver parenchymal cells.J. Cell Biol. 43, 506–20.

    Google Scholar 

  • BULLOCK, G. R. & PETRUSZ, P. (1983)Techniques in Immunocytochemistry, Vol. 1 and 2. London: Academic Press.

    Google Scholar 

  • CASTAGNA, M. & CHAUVEAU, J. (1969) Séparation des hépatocytes isolés de rat en fractions cellulaires métaboliquement distinctes.Exp. Cell Res. 57, 211–22.

    Google Scholar 

  • CONWAY, J. G., KAUFMAN, F. C. & THURMAN, R. G. (1982) Rates of sulfation and glucuronidation of 7-hydroxycoumarin in periportal and pericentral regions of the liver lobule.Med. Pharmacol. 22, 509–16.

    Google Scholar 

  • COONS, A. H., CREECK, H. J., JONES, R. N. & BERLINER, E. (1942) The demonstration of pneumococcal antigen in tissue by the use of a fluorescent antibody.J. Immunol. 45, 159–70.

    Google Scholar 

  • DROCHMANS, P., WANSON, J. C. & MOSSELMANS, R. (1975) Isolation and subfractionation of Ficoll gradients of adult hepatocytes.J. Cell Biol. 66, 1–22.

    Google Scholar 

  • ENOMOYO, K., YING, T. S., GRIFFIN, M. J. & FARBER, E. (1981) Immunohistochemical study of epoxide hydrolase during experimental carcinogenesis.Cancer Res. 41, 3281–7.

    Google Scholar 

  • EPSTEIN, C. J. (1967) Cell size, nuclear content and the development of polyploidy in the mammalian liver.Proc. Natl. Acad. Sci. USA 57, 327–34.

    Google Scholar 

  • FELDMANN, G. & MAURICE, M. (1977) Morphological findings of liver protein synthesis and secretion. InMembrane Aterations as Basis of Liver Injury edited by POPPER, H., BIANCHI, L. & REUTTER, W.), pp. 61–76. Lancaster: MTP Press.

    Google Scholar 

  • FISCHER, G., SCHAUER, A. & KATZ, N. R. (1982) Facilitation of microdissection by use of a new microscopic and micromanipulatory unit.Naturwissenschaften 69, 146–7.

    Google Scholar 

  • FISCHER, W., ICK, M. & KATZ, N. R. (1982) Reciprocal distribution of hexokinase and glucokinase in periportal and perivenous rat liver tissue.Hoppe Seyler's Z. Physiol. Chem. 363, 375–80.

    Google Scholar 

  • GAASBEEK-JANZEN, J. W., LAMERS, W. H., MOORMAN, A. F., DE GRAAF, A., LOS, J. A. & CHARLES, R. (1984) Immunohistochemical localization of carbamoyl-phosphate synthetase (ammonia) in adult rat liver: evidence for a heterogeneous distribution.J. Histochem. Cytochem. 32, 557–64.

    Google Scholar 

  • GEBHARDT, R. & MECKE, D. (1983) Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cellsin situ and in primary culture.EMBO J. 2, 567–70.

    Google Scholar 

  • GELLER, S. (1965) Intralobular distribution of polyploid cells in rat liver.Anat. Rec. 151, 352–3.

    Google Scholar 

  • GROOTHUIS, G. M. M., HARDONK, M. J., KARLEMAN, K. P. T., MIERVENHUIS, P. & MEIJER, D. K. F. (1981) Autoradiographic and kinetic demonstration of acinar heterogeneity of taurocholate transport.Amer. J. Physiol. 243, G455-G462.

    Google Scholar 

  • GUDER, W. G. & SCHMIDT, U. (1976) Liver cell heterogeneity; the distribution of pyruvate kinase and phosphoenolpyruvate carboxykinase (GTP) in the lobule of fed and starved rats.Hoppe Seyler's Z. Physiol. Chem. 357, 1793–800.

    Google Scholar 

  • GUMUCIO, J. J., MAY, M., DVORAK, C., CHIANALE, J. & MASSEY, V. (1986) The isolation of functionally heterogeneous hepatocytes of the proximal and distal half of the liver acinus in the rat.Hepatology 6, 932–44.

    Google Scholar 

  • HÄUSSINGER, D. (1983) Hepatocyte heterogeneity in glutamine and ammonia metabolism and the role of an intracellular glutamine cycle during ureagenesis in perfused rat liver.Eur. J. Biochem. 133, 269–75.

    Google Scholar 

  • HÄUSSINGER, D. & GEROK, W. (1984) Hepatocyte heterogeneity in ammonia metabolism: impairment of glutamine synthesis in CCl4 induced liver cell necrosis with no effect on urea synthesis.Chem. Biol. Interact. 48, 191–4.

    Google Scholar 

  • HENNIG, W. (1976)In situ hybridization of nucleic acids.Trends Biochem. Sci. 1, 285–7.

    Google Scholar 

  • HILDEBRAND, R. (1980) Nuclear volume and cellular metabolism.Anat. Embryol. Cell. Biol. 60, 1–54.

    Google Scholar 

  • ISRAEL, Y., KALANT, H., ORREGO, H., KHANNA, J. M., VIDELA, L. & PHILLIPS, J. M. (1975) Experimental alcoholinduced hepatic necrosis: suppression by propylthiouracil.Proc. Natl. Acad. Sci. USA 72, 1137–41.

    Google Scholar 

  • JAMES, R., DESMOND, P., KÜPFER, A., SCHENKER, S. & BRANCH, R. A. (1981) The differential localization of various drug metabolizing systems within the rat liver lobule as determined by the hepatotoxins allyl alcohol, carbon tetrachloride and bromobenzene.J. Pharmacol. Exp. Ther. 217, 127–32.

    Google Scholar 

  • JI, S., CHANCE, B., NISHIKI, K., SMITH, T. & RICH, T. (1979) Micro-light guides: A new method for measuring tissue fluorescence and reflectance.Amer. J. Physiol. 236, C144-C156.

    Google Scholar 

  • JI., S., LEMASTERS, J. J. CHRISTENSON, V. & THURMAN, R. G. (1982) Periportal and pericentral pyridine nucleotide fluorescence from the surface of the perfused liver: Evaluation of the hypothesis that chronic treatment with ethanol produces pericentral hypoxia.Proc. Natl. Acad. Sci. USA 79, 5415–19.

    Google Scholar 

  • JI., S., LEMASTERS, J. J. & THURMAN, R. G. (1980) A non invasive method to study metabolic events within sublobular regions of hemoglobin-free perfused liver.FEBS Lett. 113, 37–41.

    Google Scholar 

  • JONES, A. L., HRADEK, G. T., RENSTON, R. H., WONG, K. Y., KARLAGANIS, R. & BAUMGARTNER, G. (1980) Autoradiographic evidence for hepatic lobular concentration gradient of bile acid derivative.Amer. J. Physiol. 238, G233-G237.

    Google Scholar 

  • KANAI, K., KANAMURA, S. & WATANABE, J. (1986) Peri-and postnatal development of heterogeneity in the amounts of endoplasmic reticulum.Amer. J. Anat. 175, 471–80.

    Google Scholar 

  • KATZ, N., TEUTSCH, H. F., JUNGERMANN, K. & SASSE, D. (1977a) Heterogeneous reciprocal localization of fructose-1, 6-bisphosphatase and glucokinase in microdissected periportal and perivenous rat liver tissue.FEBS Lett. 83, 272–6.

    Google Scholar 

  • KATZ, N., TEUTSCH, H. F., SASSE, D. & JUNGERMANN, K. (1977b) Heterogeneous distribution of glucose-6-phosphatase in microdissected periportal and perivenous rat liver tissue.FEBS Lett. 76, 226–30.

    Google Scholar 

  • KATZ, N. R., FISCHER, W. & GIFFHORN, S. (1983a) Distribution of enzymes of fatty acid and ketone body metabolism in periportal and perivenous rat liver tissue.Eur. J. Biochem. 135, 103–7.

    Google Scholar 

  • KATZ, N. R., FISCHER, W. & ICK, M. (1983b) Heterogeneous distribution of ATP citrate lysate in rat liver parenchyma.Eur. J. Biochem. 130, 297–301.

    Google Scholar 

  • KIERNAN, F. (1833) The anatomy and physiology of the liver.Philos. Trans. R. Soc. London, 711–70.

  • KLINGER, N., DEVEREUX, T., MARONPOT, R. & FOUTS, J. (1986) Functional hepatocellular heterogeneity determined by the hepatotoxins allyl alcohol and bromobenzene in immature and adult Fischer 344 rats.Toxicol. Appl. Pharmacol. 83, 108–14.

    Google Scholar 

  • LAWRENCE, G. M., JEPSON, M. A., TRAYER, I. P. & WALKER, D. G. (1986) The compartmentation of glycolytic and gluconeogenic enzymes in rat kidney and liver and its significance to renal and hepatic metabolism.Histochem J. 18, 45–53.

    Google Scholar 

  • LAWRENCE, G. M., TRAYER, I. P. & WALKER, D. (1984) Histochemical and immunohistochemical localization of hexokinase isoenzymes in normal rat liver.Histochem. J. 16, 1099–111.

    Google Scholar 

  • LEBOUTON, A. V. (1968) Heterogeneity of protein metabolism between liver cells as studied by autoradiography.Curr. Med. Biol. 2, 111–14

    Google Scholar 

  • LEBOUTON, A. V. & PETERS MASSE, J. (1980a) A random arrangement of albumin-containing hepatocytes seen with histo-immunologic methods. I. Verification of the artefact.Anat. Rec. 197, 183–94.

    Google Scholar 

  • LEBOUTON, A. V. & PETERS MASSE, J. (1980b) A random arrangement of albumin-containing hepatocytes seen with histo-immunologic methods. II. Conditions producing the artefact.Anat. Rec. 197, 195–203.

    Google Scholar 

  • LEMASTERS, J. J., JI, S. & THURMAN, R. G. (1986) New micromethods for studying sublobular structure and function in the isolated perfused rat liver. InRegulation of Hepatic Metabolism (edited by THURMAN, R. G., KAUFFMAN, F. C. & JUNGERMANN, K.), pp. 159–84. New York and London: Plenum Press.

    Google Scholar 

  • LINDROS, K. O., BENGTSSON, G., SALASPURO, M. & VÄÄNÄNEN, H. (1986) Separation of functionally different liver cell types. InRegulation of Hepatic Metabolism (edited by THURMAN, R. G., KAUFFMAN, F. C. & JUNGERMANN, K.), pp. 137–58. New York and London: Plenum Press.

    Google Scholar 

  • LORENZ, K. (1976) On the nature of protein benzoquinone complexes.Experientia 32, 1502–3.

    Google Scholar 

  • LOUD, A. V. (1968) A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells.J. Cell Biol. 37, 27–46

    Google Scholar 

  • LOWRY, D. H. & PASSONNEAU, J. V. (1972)A Flexible System of Enzymatic Analysis. New York: Academic Press.

    Google Scholar 

  • LOWRY, O. H., PASSONNEAU, J. V., SCHULZ, D. W. & ROCK, M. K. (1961) The measurement of pyridine nucleotides by enzymatic cycling.J. Biol. Chem. 236, 2746–55.

    Google Scholar 

  • LUNDIN, A., RICHARDSSON, A. & THORE, A. (1976) Continuous monitoring of ATP-converting reactions by purified firefly luciferase.Anal. Biochem. 75, 611–20.

    Google Scholar 

  • MALL, F. P. (1906) A study of the structural unit of the liver.Amer. J. Anat. 5, 227–308.

    Google Scholar 

  • MALY, I. P. & SASSE, D. (1983). A technical note on the histochemical demonstration of G6P'ase activity.Histochemistry 78, 409–11.

    Google Scholar 

  • MALY, I. P. & SASSE, D. (1985) Microquantitative determination of the distribution patterns of alcohol dehydrogenase activity in the liver of rat, guinea pig and horse.Histochemistry 83, 431–6.

    Google Scholar 

  • MATSUMOTO, T., KOMORI, R., MAGARA, T., KI, T., KAWA-KASUI, M., TOKUDA, T., TAKASAKI, S., HAYASHI, H., JO, K., HANO, H., FUJINO, H. & TANAKA, H. (1979) A study on the normal structure of human liver, with special reference to its angioarchitecture.Jikeikai Med. J. 26, 1–40.

    Google Scholar 

  • MATSUMURA, T. & THURMAN, R. G. (1983a) Measuring rates of O2 uptake in periportal and pericentral regions of the liver lobule: Stop-flow experiments with perfused liver.Amer. J. Physiol. 244, G656-G659.

    Google Scholar 

  • MATSUMARA, T., KASHIWAGI, T., MEREN, H. & THURMAN, R. G. (1984) Gluconeogenesis predominates in periportal regions of the liver lobule.Eur J. Biochem. 144, 409–15.

    Google Scholar 

  • MATSUMURA, T. THURMAN, R. G. (1983b) Predominance of glycolysis in pericentral regions of the liver lobule.Eur. J. Biochem. 140, 229–34.

    Google Scholar 

  • MILLER, S. B., SACCOMANI, G., PRETLOW, T. P., KIMBALL, P. M., SCOTT, J. A., SACHS, G. & PRETLOW, T. G. (1983) Purification of cells from livers of carcinogen-treated rats by free-flow electrophoresis.Cancer Res. 43, 4176–9.

    Google Scholar 

  • MITCHELL, J. R., JOLLOW, D. J., GILLETTE, J. R. & BRODIE, B. B. (1973) Drug metabolism as a cause of drug toxicity.Drug Metab. Dispos. 1, 418–38.

    Google Scholar 

  • MIZUTANI, A. (1968) Cytochemical demonstration of ornithine carbamoyltransferase activity in liver mitochondria of rat and mouse.J. Histochem. Cytochem. 16, 172–80.

    Google Scholar 

  • MORRISON, G. R., BROCK, F. E., KARL, I. E. & SHANK, R. E. (1965) Quantitative analysis of regenerating and degenerating areas within the lobule of the carbon tetrachloride-injured liver.Arch. Biochem. Biophys. 111, 448–64.

    Google Scholar 

  • NAKANE, P. K. & PIERCE, G. B. (1966) Enzyme labelled antibodies: Preparation and application for the localization of antigens.J. Histochem. Cytochem. 14, 929–31.

    Google Scholar 

  • NOLTE, J. & PETTE, D. (1972) Microphotometric determination of enzyme activity in single cells in cryostat sections.J. Histochem. Cytochem. 20, 567–76.

    Google Scholar 

  • OLSEN, M. J. & THURMAN, R. G. (1987) Quantitation of ketogenesis in periportal and pericentral regions of the liver lobule.Arch. Biochem. Biophys. 253, 26–37.

    Google Scholar 

  • PANG, K. S., KOSTER, H., HELSEMA, I. C., SCHOLTENS, E., MULDER, G. J. & STILLWELL, R. N. (1983). Normal and retrograde perfusion to probe the zonal distribution of sulfation and glucuronidation activities of harmol in the prefused rat liver preparation.J. Pharmacol. Exp. Ther. 224, 647–53.

    Google Scholar 

  • PANG, J. S. & TERRELL, J. A. (1981) Retrograde perfusion to probe the heterogenous distribution of hepatic drug metabolizing enzymes in rats.J. Pharmacol. Exp. Ther. 216, 339–46.

    Google Scholar 

  • PEARSE, A. G. E. & POLAK, J. M. (1975) Bifunctional reagents as vapour- and liquid-phase fixatives for immunohistochemistry.Histochem. J. 7, 179–86.

    Google Scholar 

  • PETTE, D., WASMUND, H. & WIMMER, M. (1979) Principle and method of kinetic microphotometric enzyme activity determinationin situ.Histochemistry 64, 1–10.

    Google Scholar 

  • QUISTORFF, B. (1985) Gluconeogenesis in periportal and perivenous hepatocytes of rat liver, isolated by a new high-yield digitonin-collagenase perfusion technique.Biochem. J. 229, 221–6.

    Google Scholar 

  • QUISTORFF, B. & CHANCE, B. (1986) Redox scanning in the study of metabolic zonation of liver. InRegulation of Hepatic Metabolism (edited by THURMAN, R. G., KAUFFMAN, F. C. & JUNGERMANN, K.), pp. 185–207. New York and London: Plenum Press.

    Google Scholar 

  • QUISTORFF, B., DICH, J. & GRUNNET, N. (1986) Periportal and perivenous hepatocytes retain their zonal characteristics in primary culture.Biochem. Biophys. Res. Commun. 139, 1055–61.

    Google Scholar 

  • QUISTORFF, B. & GRUNNET, N. (1987) Dual-digitonin-pulseperfusion. Concurrent sampling of periportal and perivenous cytosol of rat liver for determination of metabolites and enzyme activities.Biochem. J. 243, 87–95.

    Google Scholar 

  • QUISTORFF, B., GRUNNET, N. & CORNELL, N. W. (1985a) Digitonin perfusion of rat liver. A new approach in the study of intra-acinar and intracellular compartmentation in the liver.Biochem. J. 226, 289–91.

    Google Scholar 

  • QUISTORFF, B., HASELGROVE, J. C. & CHANCE, B. (1985b) High spatial resolution readout of 3-D metabolic organ structure: an automated, low- temperature redox ratioscanning instrument.Anal. Biochem. 148, 389–400.

    Google Scholar 

  • RAPPAPORT, A. M. (1976) The microcirculatory acinar concept of normal and pathological hepatic structure.Beitr. Pathol. 157, 215–43.

    Google Scholar 

  • RECKNAGEL, R. O. & GLINDE, E. A. (1973) Carbon tetrachloride hepatoxicity: An example of lethal cleavage.CRC Crit. Rev. Toxicol. 2, 263–300.

    Google Scholar 

  • REDICK, J. A., JAKOBY, W. B. & BARON, J. (1982) Immunohistochemical localization of glutathione-S-transferases in livers of untreated rats.J. Biol. Chem. 257, 15200–3.

    Google Scholar 

  • REDICK, J. A., KAWABATA, T. T., GUENGERICH, F. P., KRIETER, P. A., SHIRES, T. K. & BARON, J. (1980) Distribution of monooxygenase components and epoxide hydratase within the livers of untreated male rats.Life Sci. 27, 2465–70.

    Google Scholar 

  • RICHARDS, W. L. & POTTER, V. R. (1980) Scanning microdensitometry of glycogen zonation in livers of rats adapted to controlled feeding schedule and to 30, 60 or to 90% casein diets.Amer. J. Anat. 157, 71–85.

    Google Scholar 

  • RIEDER, H. (1981) NADP dependent dehydrogenases in rat liver parenchyma III. The description of a lipogenic area on the basis of histochemically demonstrated enzyme activities.Histochemistry 72, 579–615.

    Google Scholar 

  • ROJKIND, M., PORTALES, M. L. & CID, M. E. (1974) Isolation of rat liver cells containing concanavalin A receptor sites.FEBS Lett. 47, 11–14.

    Google Scholar 

  • SAHEKI, T., YAGI, Y., SASE, M., NAKANO, K. & SATO, E. (1983) Immunocytochemical localization of argininosuccinate synthetase in the liver of control and citrullinemic patients.Biomed. Res. 4, 235–8.

    Google Scholar 

  • SASSE, D. (1975) Dynamics of liver glycogen.Histochemistry 4, 237–54.

    Google Scholar 

  • SASSE, D. (1986) Histology and histochemistry. InRegulation of Hepatic Metabolism (edited by THURMAN, R. G., KAUFFMAN, F. C. & JUNGERMANN, K.), pp. 57–86. New York and London: Plenum Press.

    Google Scholar 

  • SASSE, D. & KÖHLER, J. (1969) Die topochemische Verlagerung von Funktionseinheiten des Glykogenstoffwechsels der Leber durch Allylformiat.Histochemie 18, 325–36.

    Google Scholar 

  • SCHREIBER, G., LESCH, R., WEINSSEN, U. & ZÄHRINGER, J. (1970) The distribution of albumin synthesis throughout the liver lobule.J. Cell Biol. 47, 285–9.

    Google Scholar 

  • TEUTSCH, H. F. (1981) Chemomorphology of liver parenchyma. Qualitative histochemical distribution patterns and quantitative sinusoidal profiles of G6P'ase, G6PDH and malic enzyme activity and of glycogen content.Progr. Histochem. Cytochem. 14, 1–92.

    Google Scholar 

  • TEUTSCH, H. F. & RIEDER, R. (1979) NADP-dependent dehydrogenases in rat liver parenchyma. II. Comparison of qualitative and quantitative G6PDH distribution patterns with particular reference to sex differences.Histochemistry 60, 43–52.

    Google Scholar 

  • THORGEIRSSON, S. S., MITCHELL, J. R., SASAME, H. A. & POTTER, W. Z. (1976) Biochemical changes after hepatic injury by allyl alcohol andN-hydroxy-2-acetylaminofluorescence.Chem. Biol. Interact. 15, 139–47.

    Google Scholar 

  • TRUS, M., ZAWALICH, H., GAYNOR, D. & MATSCHINSKY, F. (1980) Hexokinase and glucokinase distribution in the liver lobule.J. Histochem. Cytochem. 28, 579–81.

    Google Scholar 

  • TULP, A., WELAGEN, J. & EMKELOT, P. (1976) Separation of intact rat hepatocytes and rat liver nuclei into ploidy classes by velocity sedimentation at unit gravity.Biochim. Biophys. Acta 451, 567–82.

    Google Scholar 

  • UCHIYAMA, Y. & ASARI, A. (1984) A morphometric study of the variations in subcellular structures of rat hepatocytes during 24 hours.Cell Tissue Res. 236, 305–15.

    Google Scholar 

  • VÄÄNÄNEN, H., LINDROS, K. O. & SALASPURO, M. (1983) Selective isolation of intact periportal or perivenous hepatocytes by antero- and retrograde collagenase gradient perfusions.Liver 3, 131–9.

    Google Scholar 

  • VAN NOORDEN, C. J. F. & BUTCHER, R. G. (1986) A quantitative histochemical study of NADPH-ferrihemoprotein reductase activity.Histochem J. 18, 364–70.

    Google Scholar 

  • WACHSTEIN, M. & MEISEL, E. (1956) On the histochemical demonstration of glucose-6-phosphatase.J. Histochem. Cytochem,4, 592.

    Google Scholar 

  • WIENER, J., LOUD, A. V., KIMBERG, D. & SPIRO, D. (1968) A quantitative description of cortisone induced alteration in the ultrastructure of rat liver parenchymal cells.J. Cell Biol. 37, 47–62.

    Google Scholar 

  • WIMMER, M. & PETTE, D. (1979) Microphotometric studies on intracellular enzyme distribution in rat liver.Histochemistry 64, 23–33.

    Google Scholar 

  • ZIERZ, S., KATZ, N. & JUNGERMANN, K. (1983) Distribution of pyruvate kinase types and type M2 in microdissected periportal and perivenous rat liver tissue with different dietary states.Hoppe Seyler's Z. Physiol. Chem. 364, 1447–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katz, N.R. Methods for the study of liver cell heterogeneity. Histochem J 21, 517–529 (1989). https://doi.org/10.1007/BF01753352

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01753352

Keywords

Navigation