Skip to main content
Log in

The emergence of classical properties through interaction with the environment

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The dependence of macroscopic systems upon their environment is studied under the assumption that quantum theory is universally valid. In particular scattering of photons and molecules turns out to be essential even in intergalactic space in restricting the observable properties by locally destroying the corresponding phase relations. The remaining coherence determines the ‘classical’ properties of the macroscopic systems. In this way local classical properties have their origin in the nonlocal character of quantum states.

The effect of the interaction depends essentially on whether it permanently ‘measures’ discrete or continuous quantities. For discrete variables (here exemplified by two-state systems) the classical properties are given by the measurement basis. The continuous case, studied for translational degrees of freedom, leads to a competition between destruction of coherence by the interaction and dispersion of the wave packet by the internal dynamics. A non-phenomenological Boltzmann-type master equation is derived for the density matrix of the center of mass. Its solutions show that the much-discussed dispersion hardly ever shows up even for small dust particles or large molecules. Instead the coherence length decreases towards the thermal de Broglie wave length of the object, whereas the incoherent spread increases. The Ehrenfest theorems are shown nevertheless to remain valid for recoil-free interactions. Some consequences of these investigations for the quantum theory of measurement are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schrödinger, E.: Naturwissenschaften28, 664 (1926)

    Google Scholar 

  2. Zeh, H.D.: Found. Phys.1, 69 (1970)

    Google Scholar 

  3. Baumann, K.: Z. Naturforsch.25a, 1954 (1970)

    Google Scholar 

  4. Wigner, E.P.: In: Quantum optics, experimental gravity, and measurement theory. Meystre, P., Scully, M.O. (eds.), p. 43. New York: Plenum Press 1983

    Google Scholar 

  5. Zurek, W.H.: Phys. Rev. D26, 1862 (1982)

    Google Scholar 

  6. Joos, E.: Phys. Rev. D29, 1626 (1984)

    Google Scholar 

  7. Heisenberg, W.: Z. Phys.43, 172 (1927)

    Google Scholar 

  8. Neumann, J. v.: Mathematische Grundlagen der Quantentheorie. Berlin: Springer 1932

    Google Scholar 

  9. Ludwig, G.: Z. Phys.135, 483 (1953)

    Google Scholar 

  10. Danieri, A., Loinger, A., Prosperi, G.M.: Nucl. Phys.33, 297 (1962)

    Google Scholar 

  11. Zeh, H.D.: Found. Phys.3, 109 (1973)

    Google Scholar 

  12. Zeh, H.D.: Found. Phys.9, 803 (1979)

    Google Scholar 

  13. Mott, N.F.: R. Soc. Proc. A126, 79 (1929)

    Google Scholar 

  14. Misra, B., Sudarshan, E.C.G.: J. Math. Phys.18, 756 (1977)

    Google Scholar 

  15. Kraus, K.: Found. Phys.11, 547 (1981)

    Google Scholar 

  16. Aharonov, Y., Vardi, M.: Phys. Rev. D21, 2235 (1980)

    Google Scholar 

  17. Joos, E.: Thesis (Heidelberg 1983)

  18. Zurek, W.H.: Phys. Rev. D24, 1516 (1981)

    Google Scholar 

  19. Pfeifer, P.: Thesis (Zürich 1980)

  20. Jauch, J.M.: Foundations of quantum mechanics. London: Addison-Wesley 1968

    Google Scholar 

  21. Hepp, K.: Helv. Phys. Acta45, 237 (1972)

    Google Scholar 

  22. Primas, H.: Chemistry, quantum mechanics and reductionism. In: Lecture Notes in Chemistry. Vol. 24. Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  23. Kübler, O., Zeh, H.D.: Ann. Phys. (NY)76, 405 (1973)

    Google Scholar 

  24. Rohrlich, F.: Classical charged particles. London: Addison-Wesley 1965

    Google Scholar 

  25. Zeh, H.D.: Die Physik der Zeitrichtung. In: Lecture Notes in Physics. Vol. 200. Berlin, Heidelberg, New York, Tokyo: Springer 1984

    Google Scholar 

  26. Simonius, M.: Phys. Rev. Lett.40, 980 (1978)

    Google Scholar 

  27. Harris, R.A., Stodolsky, L.: J. Chem. Phys.74, 2145 (1981)

    Google Scholar 

  28. Lax, M.: Rev. Mod. Phys.23, 287 (1951)

    Google Scholar 

  29. Jackson, J.D.: Classical electrodynamics, p. 414. New York: Wiley 1975

    Google Scholar 

  30. Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series, and products, p. 837. New York: Academic Press 1965

    Google Scholar 

  31. Everett, H.: Rev. Mod. Phys.29, 454 (1957)

    Google Scholar 

  32. Bohm, D.: Phys. Rev.85, 166 (1952)

    Google Scholar 

  33. Bell, J.S.: In: Quantum gravity II. Isham, C.J., Penrose, R., Sciama, D.W. (eds.), p. 611. Oxford: Clarendon 1981

    Google Scholar 

  34. Zeh, H.D.: Epist. Letters (Ferdinand Gonseth Association) 49.0 (1980)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joos, E., Zeh, H.D. The emergence of classical properties through interaction with the environment. Z. Physik B - Condensed Matter 59, 223–243 (1985). https://doi.org/10.1007/BF01725541

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01725541

Keywords

Navigation