Skip to main content
Log in

In vitro activity and stability against novel beta-lactamases of investigational beta-lactams (cefepime, cefpirome, flomoxef, SCE 2787 and piperacillin plus tazobactam) in comparison with established compounds (cefotaxime, latamoxef and piperacillin)

In-vitro-Aktivität und Stabilität von neuen Betalaktam Antibiotika (Cefepim, Cefpirom, Flomoxef, SCE 2787 und Piperacillin plus Tazobactam) im Vergleich mit eingeführten Substanzen (Cefotaxim, Latamoxef und Piperazillin)

  • Published:
Infection Aims and scope Submit manuscript

Summary

The therapeutic perspectives of flomoxef, SCE 2787, cefpirome, cefepime, latamoxef, cefotaxime and of piperacillin plus tazobactam were comparatively evaluated by theirin vitro activity against 1119 clinical isolates of 83 bacterial species.Escherichia coli, Klebsiella spp.Enterobacter sakazakii, Proteus spp. andShigella spp. were about equally susceptible to the cephalosporins (MIC90: 0.06 to 0.5 mg/l), while the MIC90 for piperacillin plus tazobactam was between 2 and 16 mg/l.Enterobacter cloacae, Enterobacter aerogenes andSerratia spp. were most susceptible to SCE 2787, cefpirome and cefepime (MIC90: 0.06 to 2 mg/l) followed by latamoxef, cefotaxime, flomoxef and piperacillin plus tazobactam. ForCitrobacter spp.,Providencia spp. andYersinia enterocolitica MIC90 were between 0.06 and 0.5 mg/l. Flomoxef was between 2 to 4 log2 less active against these species but more active than piperacillin plus tazobactam (MIC90: 2 and 8 mg/l).Morganella morganii andHafnia alvei were most susceptible to cefepime, cefpirome and latamoxef (MIC90: 0.13 to 0.5 mg/l) while cefotaxime (MIC90: 8 mg/l) and piperacillin plus tazobactam (MIC90: 8 and > 64 mg/l) were the least active compounds. SCE 2787, cefepime and cefpirome were the most potent beta-lactams against the majority of the 13 species of non-fermentative bacilli (NFB) investigated (MIC90: 0.5 to 16 mg/l). The oxacephems were the least active compounds against NFB. Cefepime was the most active of the compounds included againstPseudomonas aeruginosa (MIC90: 16 mg/l).Haemophilus spp.,Neisseria gonorrhoeae andBordetella pertussis were most susceptible to cefotaxime (MIC90: 0.03 to 0.06 mg/l). Latamoxef had the lowest activity of all compounds against gram-positive cocci. Flomoxef was the most active compound against penicillinase producingStaphylococcus aureus and about equally active as the other betalactams against methicillin susceptible staphylococci of other staphylococcal species. Non-enterococcal streptococci had MIC90 between 0.03 und 0.5 mg/l for all.Streptococcus pneumoniae with MICs for penicillin equal to or above 1 mg/l were between 16 and 64 times less susceptible (MIC90: between 0.5 and 4 mg/l) than penicillin-susceptible organisms (MIC90: between 0.03 and 0.13 mg/l). Flomoxef and piperacillin plus tazobactam were the most active of the compounds against anaerobic organisms. The oxacephem flomoxef was the most stable of the compounds included against novel extended broad spectrum beta-lactamases (TEM-3 to TEM-7, SHV-2 to SHV 5, CMY-1, CTX-M-1) followed by latamoxef. However, both oxacephamycins are hydrolysed by cephamycinases while SCE 2787, cefepime and cefpirome are stable against cephamycinases. Progress in antibacterial activity of parenteral cephalosporins was achieved both by structural modifications (of latamoxef or cefotaxime) and combination of piperacillin with taxobactam. Flomoxef in comparison with latamoxef extended its spectrum to include staphylococci and increased activity against non-enterococcal streptococci 16 to 32 times. The various structural modifications of cefotaxime at position 3 of the cephalosporin ring improved the antibacterial profile of SCE 2787, cefepime and cefpirome in very much the same way (enhanced activity mainly against organisms producing chromosomal cephalosporinases, e. g.Enterobacter spp.,Serratia spp.,H. alvei, M. morganii and non-fermentative bacilli). Tazobactam protects piperacillin against plasmidic beta-lactamases, however, this was achieved to an even higher extent by the structural modifications of aminothiazole-methoximino cephalosporins (SCE 2787, cefepime and cefpirome) and in particular of flomoxef.

Zusammenfassung

Die Perspektiven für eine Verbesserung der antiinfektiösen Therapie mit Hilfe neuer Betalaktamantibiotika (Flomoxef, SCE 2787, Cefpirom, Cefepim, Piperacillin plus Tazobactam) im Vergleich mit Cefotaxim und Latamoxef wurden durch Vergleich ihrerin vitro Aktivitäten gegenüber 1119 Isolaten aus 83 Spezies analysiert.Escherichia coli, Klebsiella spp.,Enterobacter sakazakii, Proteus spp. undShigella spp. erwiesen sich als etwa gleich sensitiv gegenüber allen Cephalosporinen (MHK90: 0,06 und 0,5 mg/l) während die MHK90 für Piperacillin plus Tazobactam zwischen 2 und 16 mg/l lagen.Enterobacter cloacae, Enterobacter aerogenes undSerratia spp. waren am empfindlichsten gegenüber SCE 2787, Cefpirom und Cefepim (MHK90: 0,06–2 mg/l), es folgten Latamoxef, Cefotaxim, Flomoxef und Piperacillin plus Tazobactam. BeiCitrobacter spp.Providencia spp. undYersinia enterocolitica lagen die MHK90 Werte zwischen 0,06 und 0,5 mg/l, Flomoxef war gegen diese Spezies 2 bis 16 mal weniger aktiv, jedoch aktiver als Piperacillin plus Tazobactam (MHK90: 2–8 mg/l). GegenMorganella morganii undHafnia alvei waren Cefepim, Cefpirom und Latamoxef die wirksamsten Substanzen (MHK90 zwischen 0,13 und 0,5 mg/l) während Cefotaxim (MHK90: 8 mg/l) und Piperacillin plus Tazobactam (MHK90: 8 bis > 64 mg/l) die niedrigste Aktivität aufwiesen. Gegen nichtfermentierende Bakterien (13 Spezies) zeigten SCE 2787, Cefepim und Cefpirom die höchste Aktivität (MHK90: 0,5–16 mg/l). Hier waren die Oxacepheme am wenigsten wirksam. Cefepim war unter den hier verglichenen Betalaktamen das aktivste gegenüber Pseudomonas aeruginosa (MHK90 16 mg/l).Haemophilus spp.,Neisseria gonorrhoeae undBordetella pertussis waren am empfindlichsten gegenüber Cefotaxim (MHK90: 0,03–0,06 mg/l). Gegenüber allen grampositiven Kokken waren alle einbezogenen Substanzen deutlich stärker aktiv als Latamoxef (MHK90 gegenüber Staphylokokken 8–64 mg/l, Streptokokken, außer Enterkokken, 4–8 mg/l). Unter den Methicillin-sensitiven Staphylokokken waren die penicillinasebildenden Staphylococcus aureus Stämme am empfindlichsten gegen Flomoxef, die Isolate der übrigen Staphylokokken Spezies waren etwa gleich sensitiv gegenüber allen Substanzen. Streptokokken (ohne Enterokokken) hatten MHK90-Werte zwischen 0,03 und 0,5 mg/l.Streptococcus pneumoniae Isolate mit MHK-Werte für Penicillin über 1 mg/l waren zwischen 16 und 64 mal weniger empfindlich (MHK90: 0,5 bis 4 mg/l) gegenüber anderen Betalaktamen als penicillinempfindliche Pneumokokken (MHK90: 0,03 bis 0,13). Gegenüber Isolaten anaerober Spezies waren Flomoxef und Piperacillin plus Tazobactam die aktivsten Substanzen. Das Oxacephem Flomoxef war die stabilste Verbindung gegenüber neuen Betalaktamasen mit erweitertem Breitsprektrum (TEM-3 bis TEM-7, SHV-2 bis SHV-5, CMY-1, CTX-M-1) gefolgt von Latamoxef. Beide Oxacephamycine werden jedoch von Cephamycinasen hydrolysiert. Weitgehend cephamycinasefest sind SCE 2787, Cefepim und Cefpirom. Somit konnten Möglichkeiten antibiotischer Therapie mithilfe parenteraler Betalaktame verbessert werden sowohl durch Derivate eingeführter Substanzen als auch durch deren Kombination mit Betalaktamaseinhibitoren (Piperacillin plus Tazobactam): Die Latamoxef-Lücke gegenüber grampositiven Kokken ließ sich mit dem Flomoxef schließen und die Aktivität gegenüber Streptokokken um das 16- bis 32fache erhöhen. Die Cefotaxim-Derivate (SCE 2787, Cefepim, Cefpirom) verfügen bei vielen Spezies über erhöhte antibakterielle Aktivität gegenüber der Ausgangssubstanz (insbesondere gegenüber Spezies mit chromosomalen Betalaktamasen wieEnterobacter spp.,Serratia spp.,H. alvei, M. morganii und nichtfermentierende Bakterien). Tazobactam schützt das Piperacillin vor plasmidischen Betalaktamasen jedoch nicht in dem Ausmaß wie das durch die strukturelle Veränderung der Aminothiazolmethoximino-cephalosporinstruktur (SCE 2787, Cefepim, Cefpirom) oder insbesondere durch Flomoxef erreicht werden konnte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okumura, J., Aburaki, S., Kamachi, H., Narita, Y., Naito, T., Kawaguchi, H.: Program Abstr. Intersci. Conf. Antimicrob. Agents Chemother. 23rd, abstr. no. 576, 1993.

  2. Khan, N. J., Bihl, J. A., Schell, R. F., LeFrock, J. L., Weber, S. J. Antimicrobial activities of BMY-28142, cefbuperazone, and cefpiramide compared with those of other cephalosporins. Antimicrob. Agents Chemother. 26 (1984) 585–590.

    Google Scholar 

  3. Seibert, G., Limbert, M., Winkler, I., Dick, T. The antibacterial activityin vitro and β-lactamase stability of the new cephalosporin HR 810 in comparison with five other cephalosporins and two aminoglycosides. Infection 11 (1983) 275–279.

    Google Scholar 

  4. Bauernfeind, A. Comparativein vitro activity of SCH 34343, imipenem, cefpirome and cefotaxime. J. Antimicrob. Chemother. 15 (1985) (Suppl. C) 155–164.

    Google Scholar 

  5. Aronoff, S. C., Jacobs, A. R., Johenning, S., Yamabe, S. Comparative activities of the β-lactamase inhibitors YTR 830, sodium clavulanate and sulbactam combined with amoxicillin or ampicillin. Antimicrob. Agents Chemother. 26 (1984) 580–582.

    Google Scholar 

  6. Sirot, D., Sirot, J., Labia, R., Morand, A., Courvalin, P., Darfeuille-Michaud, A., Perroux, R., Cluzel, R. Transferable resistance of third generation cephalosporins in clinical isolates ofKlebsiella pneumoniae: identification of CTX-1, a novel β-lactamase. J. Antimicrob. Chemother. 20 (1987) 323–334.

    Google Scholar 

  7. Philippon, A., Labia, R., Jacoby, G. Extended-spectrum β-lactamases, Minireview. Antimicrob. Agents Chemother. 33 (1989) 1131–1136.

    Google Scholar 

  8. Petit, A., Sirot, D. L., Chanal, C. M., Sirot, J. L., Labia, R., Gerbaud, G., Cluzel, R. A. Novel plasmid-mediated β-lactamase in clinical isolates ofKlebsiella pneumoniae more resistant to ceftazidime than to other broad-spectrum cephalosporins. Antimicrob. Agents Chemother. 32 (1988) 626–630.

    Google Scholar 

  9. Bauernfeind, A., Hörl, G. Novel R-factor borne β-lactamase ofEscherichia coli confering resistance to cephalosporins. Infection 15 (1987) 257–259.

    Google Scholar 

  10. Gutmann, L., Kitzis, M. D., Billot-Klein, D., Goldstein, F., Tran Van Nhieu, G., Lu, T., Carlet, J., Collatz, E., Williamson, R. Plasmid-mediated β-lactamase (TEM-7) involved in resistance to ceftazidime and aztreonam. Rev. Infect. Dis. 10 (1988) 860–866.

    Google Scholar 

  11. Mabilat, C., Courvalin, P. Development of “Oligotyping” for characterization and molecular epidemiology of TEM β-lactamases in members of the family Enterobacteriaceae. Antimicrob. Agents Chemother. 34 (1990) 2210–2216.

    Google Scholar 

  12. Bauernfeind, A., Shah, P., Petermüller, C., Motz, M.: Plasmid-determined resistance to third generation cephalosporins in Enterobacteria. 4th Mediterranean Congress of Chemotherapy (1984), Proceedings 30–31.

  13. Shah, P. M., Stille, W. Escherichia coli andKlebsiella pneumoniae strains more susceptible to cefoxitin than to third generation cephalosporins. J. Antimicrob. Chemother. 11 (1983) 597–601.

    Google Scholar 

  14. Buré, A., Legrand, P., Arlet, G., Jarlier, V., Paul, G., Philippon, A. Dissemination in five French hospitals ofKlebsiella pneumoniae serotype K25 harboring a new transferable enzymatic resistance to third generation cephalosporins and aztreonam. Eur. J. Clin. Microbiol. 7 (1988) 780–782.

    Google Scholar 

  15. Gutmann, L., Ferré, B., Goldstein, F. W., Rizk, N., Pinto-Schuster, E., Acar, J. F., Collatz, E. SHV-5, a novel SHV-type β-lactamase that hydrolyzes broad-spectrum cephalosporins and monobactams. Antimicrob. Agents Chemother. 33 (1989) 951–956.

    Google Scholar 

  16. Bauernfeind, A., Chong, Y., Schweighart, S. Extended broad spectrum β-lactamase inKlebsiella pneumoniae including resistance to cephamycins. Infection 17 (1989) 316–321.

    Google Scholar 

  17. Bauernfeind, A., Grimm, H., Schweighart, S. A new plasmidic cefotaximase in a clinical isolate ofEscherichia coli. Infection 18 (1990) 294–298.

    Google Scholar 

  18. Bauernfeind, A., Jungwirth, R., Schweighart, S. In-vitro activity of meropenem, imipenem, the penem HRE 664 and ceftazidime against clinical isolates from West Germany. J. Antimicrob. Chemother. 24 (1989) (Suppl. A) 73–84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauernfeind, A., Schweighart, S., Eberlein, E. et al. In vitro activity and stability against novel beta-lactamases of investigational beta-lactams (cefepime, cefpirome, flomoxef, SCE 2787 and piperacillin plus tazobactam) in comparison with established compounds (cefotaxime, latamoxef and piperacillin). Infection 19 (Suppl 5), S264–S275 (1991). https://doi.org/10.1007/BF01645538

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01645538

Keywords

Navigation