Skip to main content
Log in

An application of fractal and chaos theory in the field of two-phase flow & heat transfer

Eine Anwendung der Fraktal- und Chaostheorie in einem Gebiet von Zwei-Phasen-Strömung und Wärmeübertragung

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

The essentials of the theory of fractals and chaos are reviewed and then applied to the problem of density-wave oscillations in a boiling channel. It is shown that these mathematical techniques give valuable new insight into nonlinear thermal-hydraulic oscillations.

Zusammenfassung

Die entscheidenden Formeln der Fraktal- und Chaostheorie wurden nochmals aufgezeigt und anschließend auf das Problem der zeitlich veränderten Dichtewellen in einem Siedekanal angewandt. Es wurde gezeigt, daß beide mathematische Verfahren einen wertvollen neuen Einblick in nicht lineare thermisch-hydraulische Schwingungen geben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A x−s :

Heated channel cross sectional area

A R :

Riser cross sectional area

c pf :

Liquid specific heat

D :

Channel diameter

D c :

Correlation dimension

E :

Energy

f :

Friction coefficient

g :

Gravity

h :

Specific enthalpy

h fg :

Latent heat of vaporization

h f :

Liquid enthaly

K :

Loss coefficient

L :

Channel length

M :

Mass

M 2 :

Two-phase mass in the heated channel

N s :

Number of nodes in the subcooled region

N R :

Number of nodes in the riser

P H :

Heated perimeter

p :

Pressure

Δp :

Pressure drop

q″:

Heat flux

q :

Total power

t :

Time

u :

Velocity

v f :

Specific voluje of the liquid

v fg :

Liquid to vapor specific volume difference

w :

Mass flow rate

z :

Space variable

β :

Liquid thermal expansion coefficient, − 1/ϱ ∄ϱ/∄T

δ x :

Perturbation,x(t)−x 0

ϱ :

Density

ϱ f :

Liquid density

Ω :

Characteristic frequency

λ :

Boiling boundary

a :

Acceleration head

ch:

Channel

D :

Downcomer

e :

Channel exit

ext:

External

f :

Friction head

i :

Channel inlet

I :

Inertial head

g :

Gravity head

n :

nth subcooled node

ref:

Reference value

R :

Riser

2φ :

Two-phase

0:

Steady-state

\(N_{p{\text{ch}}} = \frac{{q_0 }}{{w_0 }}\frac{{v_{fg} }}{{h_{fg} v_f }}\) :

(Phase change number)

\(N_{{\text{sub}}} = \frac{{(h_f - h_i )}}{{h_{fg} }}\frac{{v_{fg} }}{{v_f }}\) :

(Subcooling number)

\(Fr = \frac{{u_{i_c }^2 }}{{gL_H }}\) :

(Froude number)

Λ =fL/2D :

(Friction number)

\(b = \frac{{\beta h_{fg} v_f }}{{c_{pf} v_{fg} }}\) :

(Thermal expansion number)

References

  1. Feder, J.: Fractals. New York: Plenum Press 1988

    Google Scholar 

  2. Mandelbrot, B. B.: Fractals, form, chance and dimension. W. H. Freeman, San Francisco, Ca., 1977

    Google Scholar 

  3. Barnsley, M.: Fractals everywhere. New York: Academic Press Inc. 1988

    Google Scholar 

  4. Barnsley, M. F.; Devaney, R. L.; Mandelbrot, B. B.; Peitgen, H.-O.; Saupe, D.; Voss, R. F.: The science of fractal images. Berlin Heidelberg New York: Springer 1988

    Google Scholar 

  5. Moon, F. C.: Chaotic vibrations. New York: Wiley & Sons 1987

    Google Scholar 

  6. Packard, N. H.; Crutchfield, J. P.; Farmer, J. D.; Shaw, R. S.: Geometry from a time series. Philadelphia Review Letters 45 1980

  7. Ben-Mizrachi, A.; Procaccia, I.: Characterization of experimental (noisy) strange attractors. Physical Review A. 29, No. 2, 1984

  8. Dorning, J.; Nonlinear dynamics and chaos in heat transfer and fluid flow. AIChE Symposum Series-269, 85, 1989

    Google Scholar 

  9. Bergé, P.; Pomeau, Y.; Vidal, C.: Order within chaos. New York: Wiley & Sons 1984

    Google Scholar 

  10. Marsden, J.; McCracken, M.: The Hopf bifurcation and its applications. App. Math. Series Berlin Heidelberg New York: Springer 1976

    Google Scholar 

  11. Achard, J. L.; Drew, D. A.; Lahey, R. T., Jr.: The analysis of nonlinear density-wave oscillations in boiling channels. J. Fluid Mechanics 155 1985

  12. Rizwan-Uddin; Dorning, J. J.: Some nonlinear dynamics of a heated channel. Nuc. Eng. & Des., 93 1986

  13. Feigenbaum, M. J.: Qualitative universality for a class of nonlinear transformations, J. Statistical Physics, 19(1), 1978

  14. Hassard, B. D.; Kazarinoff, N. D.; Wau, Y.-H.: Theory and applications of Hopf bifurcation, London Mathematical Society Lecture Note Series-41, Cambridge: University Press 1981

    Google Scholar 

  15. Thompson, J. M. T.; Stewart, H. B.: Nonlinear dynamics and chaos. New York: Wiley & Sons 1986

    Google Scholar 

  16. Lorenz, E. N.: Deterministic non-periodic flow. J. Atmos. Sci. 20. (1963)

  17. Lahey, R. T.; Jr. & Moody, F. J.: The thermal-hydraulics of a boiling water nuclear reactor. ANS Monograph, 1977

  18. Rizwan-Uddin; Dorning, J. J.: A chaotic attractor in a periodically forced two-phase flow system. Nucl. Sci. & Eng. 100 (1988) 393–404

    Google Scholar 

  19. LeCoq, G.: Steam generator dynamic instabilities simulation — experimental analysis and theoretical interpretation. Proceedings of the 3rd. Int. Topical Meeting on Nuclear Power Plant Thermal-Hydraulics and Operations. Seoul, Korea, 1988

  20. Clausse, A.; Lahey, R. T., Jr.: An investigation of periodic and strange attractors in boiling flows using chaos theory. Proceedings of the 9th International Heat Transfer Conference, Jerusalem, Israel, 1990

  21. Clausse, A.: Efectos no Lineales en Ondas de Densidad en Flujos bifasicos. PhD thesis. Instituto Balseiro, 8400 Bariloche, Argentina, 1986

  22. Delmastro, D. G.: Influencia de la gravedad sobra la estabilidad de canales en ebullición. M. S. thesis, Instituto Balseiro, 8400 Bariloche, Argentina, 1988

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated Prof. Dr.-Ing. F. Mayinger's 60th birthday

t + =t/v

\(v{\text{ }} = {\text{ }}\frac{{N_{sub} }}{{N_{pch} }}\frac{L}{{u_{i_0 } }} = \lambda _0 /u_{i_0 }\)

M + =M/(ϱ f LA x−s)

z + =z/L

A + R =A R/A x−s

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahey, R.T. An application of fractal and chaos theory in the field of two-phase flow & heat transfer. Wärme- und Stoffübertragung 26, 351–363 (1991). https://doi.org/10.1007/BF01591668

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01591668

Keywords

Navigation