Skip to main content
Log in

Effect of focal cerebral ischemia on nitric oxide synthase expression in rats

  • Original Paper
  • Published:
Medical Electron Microscopy Aims and scope Submit manuscript

Abstract

Time- and cell-type-dependent immunohistochemical activity of nitric oxide synthase (NOS) was investigated in rat cerebral cortex following focal ischemia and the local concentration of nitric oxide (NO) was measured. NO concentration increased 2 min after the ischemia. Brain NOS-immunoreactive neurons increased in number 5 min after the ischemia. Endothelial cell NOS immunoreactivity was first detected in vascular endothelial cells and astrocytes 5 min after the ischemia, and it increased again during 60 min to 4 days after the ischemia in reactive astrocytes. Inducible NOS immunoreactivity was detected in astrocytes, vascular endothelium, and microglia/macrophages at the periphery of the ischemic core during 2–4 days after the ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    PubMed  Google Scholar 

  2. Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    PubMed  Google Scholar 

  3. Dawson TM, Snyder SH (1994) Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurose 14:5147–5159

    Google Scholar 

  4. Forstermann U, Schmidt HW, Pollock JS, Sheng H, Mitchel JA, Warner TD, Nakane M, Murad F (1991) Isoform of nitrix oxide synthase. Biochem Pharmacol 42:1849–1857

    PubMed  Google Scholar 

  5. Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 87:682–685

    PubMed  Google Scholar 

  6. Schmidt HW, Pollock JS, Nakane M, Gorsky LD, Forstermann U, Murad F (1991) Purification of a soluble isoform of guanylyl cyclase-activating-factor synthase. Proc Natl Acad Sci USA 88:365–369

    PubMed  Google Scholar 

  7. Pollock JS, Forstermann U, Mitchelm JA, Warner TD, Schmidt HW, Nakane M, Murad F (1991) Purification and characterization of particular endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci USA 88:10480–10484

    PubMed  Google Scholar 

  8. Yui Y, Hattori R, Kosuga K, Erizawa H, Hiki K, Kawai C (1991) Purification of nitric oxide synthase from rat macrophages. J Biol Chem 266:12544–12547

    PubMed  Google Scholar 

  9. Arai Y, Mizushima H, Shimazu M, Kitahara I, Matsumoto K, Shioda S, Nakai Y (1995) Effect of focal cerebral ischemia on NADPH diaphorase histochemical activity. Showa Univ J Med Sci 7(1):61–70

    Google Scholar 

  10. Murphy S, Grzybicki DM, Simmonds ML (1995) Glial cells as nitric oxide sources and targets. In: Nitric oxide in the nervous system. Academic Press, London, pp 163–190

    Google Scholar 

  11. Aoki E, Takeuchi IK, Shoji R, Senba R (1993) Localization of nitric oxide-related substances in the peripheral nervous tissues. Brain Res 620:142–145

    PubMed  Google Scholar 

  12. Murphy S, Simmons ML, Agullo L, Garcia A, Feinstein DL, Galea E, Reis DJ, Mine-Golonb D, Schwartz JP (1993) Synthesis of nitric oxide in CNS glial cells. Trends Neurosci 16:8323–8328

    Google Scholar 

  13. Vincent SR (1995) In: Nitric oxide in the nervous system. Academic Press, London

    Google Scholar 

  14. Wallace MN, Bislamd SK (1994) NADPH-diaphorase activity in activated astrocytes represents inducible nitric oxide synthase. Neuroscience 59(4):905–919

    PubMed  Google Scholar 

  15. Regidor J, Montesdeoca J, Ramirez-Gonzalez JA, Hernandez-Urquia CM, Divic I (1993) Birateral induction of NADPH-diaphorase activity in neocortical and hippocampal neurons by unilateral injury. Brain Res 631:171–174

    PubMed  Google Scholar 

  16. Wallace MN, Fredens K (1992) Activated astrocytes of the mouse hippocampus contain high levels of NADPH-diaphorase. Neuroreport 3:953–956

    PubMed  Google Scholar 

  17. Malinski T, Bailey F, Zhang ZG, Chopp M (1993) Nitric oxide measured by a polphyrinic microsensor in rat brain after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 13:355–358

    PubMed  Google Scholar 

  18. Nagafuji S, Sugiyama M, Matsui T (1995) Enhanced production of nitric oxide and activation of nitric oxide synthase in brain microvessels during focal cerebral ischemia and reperfusion in rats. Neurochem Res 20:329

    Google Scholar 

  19. Shintani F, Kaneda S, Nakaki T, Sato K, Yagi G, Kato R, Asai M (1994) Measurementin vivo brain microdialysis of nitric oxide release in the rat cerebellum. J Psychiatry Neurosci 19(3):217–221

    PubMed  Google Scholar 

  20. Kader A, Frazzini VI, Solomon RA, Trifiletti RR (1993) Nitric oxide production during focal cerebral ischemia in rats. Stroke 24:1709–1716

    PubMed  Google Scholar 

  21. Tominaga T, Sato S, Ohnishi T, Ohnishi ST (1993) Potentiation of nitric oxide formation following bilateral carotid occlusion and focal cerebral ischemia in the rat:in vivo detection of the nitric oxide radical by electron paramagnetic resonance spin trapping. Brain Res 614:342–346

    PubMed  Google Scholar 

  22. Tamura A, Graham DI, Mc Culloch J, Teasdale GM (1981) Focal cerebral ischemia in the rat. 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1:53–60

    PubMed  Google Scholar 

  23. Ichimori K, Ishida H, Fukahori M, Nakazawa H, Murakami E (1994) Practical nitric oxide measurement employing a nitric oxide-selective electrode. Rev Sci Instrum 65:2714–2718

    Google Scholar 

  24. Robinson AP, White TM, Mason D, White W (1986) Macrophage heterogeneity in the rat as determined by two monoclonal antibodies MRC OX-41 and MRC OX-42, the latter recognizing complement receptor type 3. Immunology 57:239–247

    PubMed  Google Scholar 

  25. Perry VH, Hume DA, Gordon S (1985) Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15:313–326

    PubMed  Google Scholar 

  26. Perry, VH, Gordon S (1987) Modulation of CD4 antigen on macrophages and microglia in the rat brain. J Exp Med 166:1138–1143

    PubMed  Google Scholar 

  27. Sigmon D, Florentino-Pineda I, Van Dyke R (1995) Halothane impairs the hemodynamic influence of endothelium-derived nitric oxide. Anesthesiology 82(1):135–143

    PubMed  Google Scholar 

  28. Tobin JR, Martin LD, Breslow MJ, Traystman RJ (1993) Selective anesthetic inhibition of brain nitric oxide synthase (abstract). Anesthesiology 79:A693

    Google Scholar 

  29. Heart JI, Jing M, Bina S, Freas W, Van Dyke RA, Muldoon ML (1993) Effects of halothane on EDRF/cGMP-mediated vascular smooth muscle relaxation. Anesthesiology 79:323–331

    PubMed  Google Scholar 

  30. Van Dyke RA, Masaki E, Muldoon SM, Mursh HM (1993) Effect of halotane and isoflurane on NO-stimulated soluble guanylate cyclase (abstract). Anesthesiology 79:A397

    Google Scholar 

  31. Dawson VL, Dauson TM, London ED, Bredt DS, Snyder SH (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 88:6368–6371

    PubMed  Google Scholar 

  32. Nowicki JP, Duval D, Poignet H, Scatton B (1991) Nitric oxide mediates neuronal death after focal ischemia in the mouse. Eur J Pharmacol 204:339–340

    PubMed  Google Scholar 

  33. Beckman JS, Beckman TW, Chem J, Marshal PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    PubMed  Google Scholar 

  34. Zhang ZG, Chopp M, Gautam S, Zaloga C, Zhang RLW, Schmidt HHH, Pollock JS, Forstermann U (1994) Upregulation of neuronal nitric oxide synthase and mRNA, and selective sparing of nitric oxide synthase containing neurons after focal cerebral ischemia in rat. Brain Res 654:85–95

    PubMed  Google Scholar 

  35. Gabott PLA, Bacon SJ (1996) Localisation of NADPH-diaphorase activity and NOS immunoreactivity in astroglia in normal adult rat brain. Brain Res 714:135–144

    PubMed  Google Scholar 

  36. Zhang ZG, Chopp M, Zaloga C, Pollock JS, Forsterman U (1993) Cerebral endothelial nitric oxide synthase expression after focal cerebral ischemia in rats. Stroke 24(12):2016–2021

    PubMed  Google Scholar 

  37. Iadecola C, Xu X, Zhang F, El-Fakahany EE, Ross ME (1995) Marked induction of calcium independent nitric oxide synthase activity after focal cerebral ischemia. J Cereb Blood Flow Metab 15:52–59

    PubMed  Google Scholar 

  38. Iadecola C, Zhang F, Xu S, Casey R, Ross ME (1995) Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. J Cereb Blood Flow Metab 15:378–384

    PubMed  Google Scholar 

  39. Dijkstra CD, Dopp EA, Jolong P, Kraal G (1985) The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct MO subpopulations in the rate recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology 54:589–599

    PubMed  Google Scholar 

  40. Sminia T, De Groot CJA, Dijkstra CD, Koetsier JC, Palmon CH (1987) Macrophages in the central nervous system of the rat. Immunobiology 174:43–50

    PubMed  Google Scholar 

  41. Milligan CE, Cunningham TJ, Levitt P (1991) Differential immunochemical markers reveal the normal distribution of brain macrophages and microglia in the developing rat brain. J Comp Neurol 314:125–135

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homma, H., Mizushima, H., Arai, Y. et al. Effect of focal cerebral ischemia on nitric oxide synthase expression in rats. Med Electron Microsc 30, 55–62 (1997). https://doi.org/10.1007/BF01545082

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01545082

Key words

Navigation