Skip to main content
Log in

Immunocytochemical localization of GTP cyclohydrolase I in the brain, adrenal gland, and liver of mice

  • Full Papers
  • Published:
Journal of Neural Transmission / General Section JNT Aims and scope Submit manuscript

Summary

GTP cyclohydrolase I (GCH) is the first and rate-limiting enzyme for the biosynthesis of tetrahydrobiopterin (BH4), the cofactor of phenylalanine, tyrosine, and tryptophan hydroxylases, the enzymes that synthesize tyrosine, catecholamines (dopamine, noradrenaline, and adrenaline), and serotonin, respectively. We produced for the first time polyclonal antibody with highly sensitive immunoreactivity against an oligopeptide of rat enzyme, GFPERELPRPGA, by immunization of rabbits with the peptide conjugated to hemocyanin by glutaraldehyde. The specificity of the antibody was confirmed by Western blot analysis. Using this antibody specific for GCH, we observed strong GCH immunostaining in the liver cells, in the dopamine-, noradrenaline-, adrenaline-, or serotonin-containing cells of the brain, and in the adrenal gland of mice. Immunocytochemical studies revealed GCH to be localized in monoamine-containing perikarya in the periglomerular cells of the olfactory bulb, zona incerta, arcuate nucleus, ventral tegmental area, substantia nigra pars compacta, locus ceruleus, nucleus tractus solitarius, area postrema, and ventrolateral area of the medulla oblongata. GCH immunostaining was particularly strong in serotoninergic nuclei, such as dorsal and median raphe nuclei, nucleus raphe pallidus, and nucleus raphe magnus. By immunoelectron micoscopy, GCH-labeled cytoplasm and microtubules in the processes were observed ultrastructurally, but no staining was found in the mitochondria, and Golgi apparatus. Immunostaining was observed neither in the group D neurons that contain only aromatic amino acid decarboxylase without tyrosine hydroxylase, nor in glial cells and endothelial cells. These results indicate the abundant presence of GCH in catecholaminergic and serotoninergic neurons as well as in the adrenal medulla and liver, where BH4 is synthesized as the cofactor of tyrosine, tryptophan, and phenylalanine hydroxylases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blau N, Thony B, Heizmann CW, Dhondt J-L (1993) Tetrahydrobiopterin efficiency: from phenotype to genotype. Pteridines 4: 1–10

    Google Scholar 

  • Dinernan JL, Dawson TM, Schell MJ, Snowman A, Snyder SH (1994) Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: implications for synaptic plasticity. Proc Natl Acad Sci USA 91: 4214–4218

    Google Scholar 

  • Duch DS, Bowers SW, Woolf JH, Nichol CA (1984) Biopterin cofactor biosynthesis: GTP cyclohydrolase, neopterin and biopterin in tissues and body fluids of mammalian species. Life Sci 35: 1895–1901

    Google Scholar 

  • Hashimoto R, Ozaki N, Ohta T, Kasahara Y, Kaneda N, Nagatsu T (1990) Plasma tetrahydrobiopterin levels in patients with psychiatric disorders. Neuropsychobiology 23: 140–143

    Google Scholar 

  • Hatakeyama K, Inoue Y, Harada T, Kagamiyama H (1991) Cloning and sequencing of cDNA encoding rat GTP cyclohydrolase I. The first enzyme of the tetrahydrobiopterin biosynthetic pathway. J Biol Chem 266: 765–769

    Google Scholar 

  • Hirayama K, Lentz SI, Kapatos G (1993) Tetrahydrobiopterin cofactor biosynthesis: GTP cyclohydrolase I mRNA expression in rat brain and superior cervical ganglia. J Neurochem 61: 1006–1014

    Google Scholar 

  • Hökfelt T, Martensson R, Björklund A, Kleinau S, Goldstein M (1984) Distributional maps of tyrosine-hydroxylase-immunoreactive neurons in the rat brain. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy. Classical transmitters in the CNS, vol 2, part 1. Elsevier, Amsterdam, pp 277–379

    Google Scholar 

  • Ichinose H, Ohye T, Takahashi E, Seki N, Hori T, Segawa M, Nomura Y, Endo K, Tanaka H, Tsuji S, Fujita K, Nagatsu T (1994) GTP cyclohydrolase I gene as a causative gene for hereditary progressive dystonia with marked diurnal fluctuation. Nature Genet 8: 236–242

    Google Scholar 

  • Jaeger CB, Ruggier DA, Albert VR, Joh TH, Reis DJ (1984) Immunocytochemical localization of aromatic-L-aminoacid decarboxylase. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy. Classical transmitters in the CNS, vol 2, part 1. Elsevier, Amsterdam, pp 387–408

    Google Scholar 

  • Janssens SP, Shimouchi A, Quertermous T, Bloch DB, Bloch KD (1992) Cloning and expression of a cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase. J Biol Chem 267: 14519–14522

    Google Scholar 

  • Kaufman S (1959) Studies on the mechanism of the enzymatic conversion of phenylalanine to tyrosine. J Biol Chem 234: 2677–2682

    Google Scholar 

  • Kaufman S (1985) Hyperphenylalaninaemia caused by defects in biopterin metabolism. J Inner Metab Dis 8 [Suppl 1]: 20–27

    Google Scholar 

  • Kosaka T, Kosaka K, Hataguchi Y, Nagatsu I, Wu J-Y, Ottersen OP, Storm-Mathisen J, Hama K (1987) Catecholaminergic neurons containing GABA-like and/or glutamic acid decarboxylase-like immunoreactivities in various brain regions of the rat. Exp Brain Res 66: 191–210

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Google Scholar 

  • Lovenberg W, Jequire E, Sjoerdsma A (1967) Tryptophan hydroxylase: measurement in pineal gland, brain stem and carcinoid tumor. Science 155: 217–219

    Google Scholar 

  • Merrifield WB (1970) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85: 2149–2154

    Google Scholar 

  • Nagatsu I, Kondo Y, Inagaki S, Karasawa N, Kato T, Nagatsu T (1977) Immunofluorescent studies on tyrosine hydroxylase: application for its axoplasmic transport. Acta Histochem Cytochem 10: 494–499

    Google Scholar 

  • Nagatsu I, Sakai M, Yoshida M, Nagatsu T (1988) Aromatic L-amino acid decarboxylase-immunoreactive neurons in and around the cerebrospinal fluid-contacting neurons of the central canal do not contain dopamine or serotonin in the mouse and rat spinal cord. Brain Res 475: 91–102

    Google Scholar 

  • Nagatsu I, Kobayashi K, Fujii T, Komori K, Sekiguchi K, Titani K, Fujita K, Nagatsu T (1990a) Antibodies raised against different oligopeptide segments of human dopamine-β-hydroxylase. Neurosci Lett 120: 141–145

    Google Scholar 

  • Nagatsu I, Komori K, Takeuchi T, Sakai M, Yamada K, Karasawa N (1990b) Transient tyrosine hydroxylase-immunoreactive neurons in the region of the anterior olfactory nucleus of pre- and postnatal mice do not contain dopamine. Brain Res 511: 55–62

    Google Scholar 

  • Nagatsu I, Yamada K, Karasawa N, Sakai M, Takeuchi T, Kaneda N, Sasaoka T, Kobayashi K, Yokoyama M, Nomura T, Katsuki M, Fujita K, Nagatsu T (1991) Expression in brain sensory neurons of the transgene in transgenic mice carrying human tyrosine hydroxylase gene. Neurosci Lett 127: 91–95

    Google Scholar 

  • Nagatsu I, Yamada K, Karasawa N, Kaneda N, Sasaoka T, Kobayashi K, Fujita K, Nagatsu T (1993a) Non-catecholaminergic neuronal expression of human tyrosine hydroxylase in the brain of transgenic mice with special reference to aromatic L-amino acid decarboxylase. In: Naoi M, Palvez HS (eds) Tyrosine hydroxylase. VSP Science Press, Zeist The Netherlands, pp 37–57

    Google Scholar 

  • Nagatsu I, Yamada K, Sakai M, Karasawa N (1993b) Immunocytochemistry and in situ hybridization of catecholamine-synthesizing enzymes and the related neurotransmitters. In: Parvez SH, Naoi M, Nagatsu T, Parvez S (eds) Methods in neurotransmitter and neuropeptide. Elsevier, Amsterdam, pp 151–183

    Google Scholar 

  • Nagatsu I, Ichinose H, Sakai M, Nagatsu T (1994) Evidence for localization of GTP cyclohydrolase I immunoreactivity in the mouse brain, adrenal gland and liver. Neurosci Res [Suppl 19]: S67 (Abstract)

    Google Scholar 

  • Nagatsu T, Levitt M, Udenfriend S (1964) Tyrosine hydroxylase: the initial step in norepinephrine biosynthesis. J Biol Chem 239: 2910–2917

    Google Scholar 

  • Nagatsu T, Yamaguchi T, Kato T, Sugimoto T, Matsuura S, Akino M, Nagatsu I, Iizuka R, Narabayashi H (1981) Biopterin in human brain and urine from controls and parkinsonian patients: application of a new radioimmunoassay. Clin Chim Acta 109: 305–311

    Google Scholar 

  • Nagatsu T, Sawada M, Yamaguchi T, Sugimoto T, Matsuura S, Akino M, Nakazawa N, Ogawa H (1984) Radioimmunoassay for neopterin in body fluids and tissues. Anal Biochem 141: 472–480

    Google Scholar 

  • Nagatsu T, Horikoshi T, Sawada M, Nagatsu I, Kondo T, Iizuka R, Narabayashi H (1986) Biosynthesis of tetrahydrobiopterin in Parkinsonian human brain. Adv Neurol 45: 223–226

    Google Scholar 

  • Nagatsu T, Matsuura S, Sugimoto T (1989) Physiological and clinical chemistry of biopterin. In: deStevens G (ed) Medical research reviews, vol 9, no 1. John Wiley & Sons, New York, pp 25–44

    Google Scholar 

  • Nathan C, Xie Q (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78: 915–918

    Google Scholar 

  • Niederwieser A, Blau N, Wang M, Joller P, Atares M, Cardesa-Garcia J (1984) GTP cyclohydrolase I deficiency, a new enzyme defect causing hyperphenylalaninemia with neopterin, biopterin, dopamine, and serotonin deficiencies and muscular hypotonia. Eur J Pediatr 141: 208–214

    Google Scholar 

  • Nomura T, Ichinose H, Sumi-Ichinose C, Nomura H, Hagino Y, Fujita K, Nagatsu T (1993) Cloning and sequencing of cDNA encoding mouse GTP cyclohydrolase I. Biochem Biophys Res Commun 191: 523–527

    Google Scholar 

  • Nygaard TG, Marsden CD, Duvoisin RC (1988) Dopa-responsive dystonia. In: Fahn S, Marsden CD, Calne DB (eds) Advances in neurology, vol 50. Raven Press, New York, pp 377–384

    Google Scholar 

  • Nygaard TG, Wilhelmsen KC, Risch NJ, Brown DL, Trugman JM, Gilliam TC, Fahn S, Weeks DE (1993) Linkage mapping of dopa-responsive dystonia (DRD) to chromosome 14q. Nature Genet 5: 386–391

    Google Scholar 

  • Sawada M, Horikoshi T, Masada M, Akino M, Sugimoto T, Matsuura S, Nagatsu T (1986) A sensitive assay of GTP cyclohydrolase I activity in rat and human tissues using radioimmunoassay of neopterin. Anal Biochem 154: 361–366

    Google Scholar 

  • Sawada M, Hirata Y, Arai H, Iizuka R, Nagatsu T (1987) Tyrosine hydroxylase, tryptophan hydroxylase, biopterin, and neopterin in the brains of normal controls and patients with senile dementia of Alzheimer type. J Neurochem 48: 760–764

    Google Scholar 

  • Segawa M, Hosaka A, Miyagawa F, Nomura Y, Imai H (1976) Hereditary progressive dystonia with marked diurnal fluctuation. In: Eldridge R, Fahn S (eds) Advances in neurology, vol 14. Raven Press, New York, pp 215–233

    Google Scholar 

  • Steinbusch HWM (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat—cell bodies and terminals. Neuroscience 6: 557–618

    Google Scholar 

  • Takeuchi Y, Kimura H, Sano Y (1982) Immunohistochemical demonstration of the distribution of serotonin neurons in the brainstem of the rat and cat. Cell Tiss Res 224: 247–267

    Google Scholar 

  • Togari A, Ichinose H, Matsumoto S, Fujita K, Nagatsu T (1992) Multiple mRNA forms of human GTP cyclohydrolase I. Biochem Biophys Res Commun 187: 359–365

    Google Scholar 

  • Uchida K, Tsuzaki N, Nagatsu T, Kohsaka S (1992) Tetrahydrobiopterin-dependent functional recovery in 6-hydroxydopamine-treated rats by intracerebral grafting of fibroblasts transfected with tyrosine hydroxylase cDNA. Dev Neurosci 14: 173–180

    Google Scholar 

  • Werner-Felmayer G, Werner ER, Fuchs D, Hausen A, Reibnegger G, Schmidt K, Weiss G, Wachter H (1993) Pteridine biosynthesis in human endothelial cells. J Biol Chem 268: 1842–1846

    Google Scholar 

  • Williams AC, Levine RA, Chase TN, Lovenberg W, Calne DB (1980) CFS hydroxylase cofactor levels in some neurological diseases. J Neurol Neurosurg Psychiatry 43: 735–738

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagatsu, I., Ichinose, H., Sakai, M. et al. Immunocytochemical localization of GTP cyclohydrolase I in the brain, adrenal gland, and liver of mice. J. Neural Transmission 102, 175–188 (1995). https://doi.org/10.1007/BF01281153

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01281153

Keywords

Navigation