Skip to main content
Log in

A distributed-memory implementation of the MCHF atomic structure package

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The MCHF (Multiconfiguration Hartree-Fock) atomic structure package consists of a series of programs that predict a range of atomic properties and communicate information through files. Several of these have now been modified for the distributed-memory environment. On the Intel iPSC/860 the restricted amount of memory and the lack of virtual memory required a redesign of the data organization with large arrays residing on disk. The data structures also had to be modified. To a large extent, data could be distributed among the nodes, but crucial to the performance of the MCHF program was the global information that is needed for an even distribution of the workload. This paper outlines the computational problems that must be solved in an atomic structure calculation and describes the strategies used to distribute both the data and the workload on a distributed-memory system. Performance data are provided for some benchmark calculations on the Intel iPSC/860.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bentley, M., and Froese Fischer, C. 1992. Hypercube conversion of serial codes for atomic structure calculations.Parallel Computing, 18: 1023–1031.

    Google Scholar 

  • Cowan, R.D. 1981.The Theory of Atomic Structure and Spectra. Univ. of Calif. Press, Berkeley.

    Google Scholar 

  • Davidson, E. 1975. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices,J. Comput. Phys., 17: 87–94.

    Google Scholar 

  • Fano, U., and Racah, G. 1959.Irreducible Tensorial Sets. Academic Press, New York.

    Google Scholar 

  • Froese Fischer, C. 1977.The Hartree-Fock Method for Atoms: A Numerical Approach. J. Wiley and Sons, New York.

    Google Scholar 

  • Froese Fischer, C. 1986. Self-consistent-field (SCF) and multiconfiguration (MC) Hartree-Fock (HF) methods in atomic calculations: Numerical integration approaches.Comput. Phys. Repts., 3: 273–325.

    Google Scholar 

  • Froese Fischer, C. 1991a. A configuration interaction program.Comput. Phys. Commun., 64: 473–485.

    Google Scholar 

  • Froese Fischer, C. 1991b. A general multi-configuration Hartree-Fock program.Comput. Phys. Commun., 64: 431–454.

    Google Scholar 

  • Froese Fischer, C. 1991c. MCHF atomic structure package.Comput. Phys. Commun., 64: 369–398.

    Google Scholar 

  • Froese Fischer, C., and Liu, B. 1991. A program to generate configuration-state lists.Comput. Phys. Commun., 64: 406–416.

    Google Scholar 

  • Froese Fischer, C., Scott, N., and Yoo, J. 1988. Multitasking the calculation of angular integrals on the CRAY-2 and CRAY X-MP.Parallel Computing, 8: 385–390.

    Google Scholar 

  • Froese Fischer, C., Smentek-Mielczarek, L., Vaeck, N., and Miecznik, G. 1993. A program to compute isotope shifts in atomic spectra.Comput. Phys. Commun. (accepted).

  • Goldberg, L. 1988. Atomic spectra and astrophysics.Phys. Today, 41 (Aug.): 38–45.

    Google Scholar 

  • Golub, G.H., and Van Loan, C.F. 1983.Matrix Computations. Johns Hopkins Univ. Press, Baltimore, Md.

    Google Scholar 

  • Hansen, J.E. 1990 Atomic spectra and oscillator strengths for astrophysics and fusion research. InProc., Third Internat. Colloquium, North-Holland, Amsterdam.

    Google Scholar 

  • Hibbert, A., and Froese Fischer, C. 1991. A general program for computing angular integrals of the non-relativistic Hamiltonian with non-orthogonal orbitals.Comput. Phys. Commun., 64: 417–430.

    Google Scholar 

  • Jönsson, P., Wahlström, C.-G., and Froese Fischer, C. 1993. A program for computing magnetic dipole and quadrupole hyperfine constants from MCHF wave functions.Comput. Phys. Commun (accepted).

  • Li, G., and Coleman, T. 1988. A parallel triangular solver for a distributed-memory multiprocessor.Siam Sci. Stat. Comp., 19: 485–502.

    Google Scholar 

  • Parpia, F.A., Grant, I.P., and Froese Fischer, C. 1993. GRASP2: A program for large-scale relativistic calculations (in preparation).

  • Shen, Z. 1991. Symmetric, non-positive definite matrix decomposition on a hypercube multiprocessor. Thesis, Dept. of Comp. Sci., Vanderbilt Univ., Nashville, Tenn.

    Google Scholar 

  • Smith, P.L., and Wiese, W. 1992.Atomic and Molecular Data for Space Astronomy. Lecture Notes in Physics 407, Springer-Verlag, Berlin.

    Google Scholar 

  • Stathopoulos, A., and Froese Fischer, C. 1991. Hypercube implementation of Davidson's algorithm for the large, sparse eigenvalue problem. InProc., 1991 Annual Users' Conf., Intel Supercomputer Users' Group (Dallas, Tex., Oct. 6–9), p. 343.

  • Tong, M., Jönsson, P., and Froese Fischer, C. 1993. Convergence studies of atomic properties from variational methods: Total energy, ionization energy, specific mass shift, and hyperfine parameters for Li.Physica Scripta, 48: 448–456.

    Google Scholar 

  • Wu, Y-S.M., Cuccaro, S.A., Hipes, P.G., and Kupperman, A. 1990. Quantum mechanical reactive scattering using a high-performance distributed memory parallel computer.Chem. Phys. Lett., 168: 429–440.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, C.F., Tong, M., Bentley, M. et al. A distributed-memory implementation of the MCHF atomic structure package. J Supercomput 8, 117–134 (1994). https://doi.org/10.1007/BF01204658

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01204658

Keywords

Navigation