Skip to main content
Log in

Pregnancy-associated changes in oligomannose oligosaccharides of human and bovine uromodulin (Tamm-Horsfall glycoprotein)

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The urinary glycoprotein uromodulin (Tamm-Horsfall glycoprotein) exhibits a pregnancy-associated ability to inhibit antigen-specific T cell proliferation, and the activity is associated with a carbohydrate moiety [Muchmore and Decker (1985) Science 229:479–81; Hessionet al., (1987) Science 237:1479–84; Muchmore, Shifrin and Decker (1987) J Immunol 138:2547–53]. We report here that the Man6(7)GlcNAc2-R glycopeptides derived from uromodulin inhibit antigen-specific T cell proliferation by 50% at 0.2–2 μM, and further studies, reported elsewhere, confirm that oligomannose glycopeptides from other sources are also inhibitory, with Man9GlcNAc2-R the most inhibitory of those tested [Muchmoreet al., J Leukocyte Biol (in press)]. In this work, we have extended the observation of pregnancy-associated inhibitory activity to a second species, and have compared the oligomannose profile of Tamm-Horsfall glycoprotein (nonpregnant) with that of uromodulin (pregnant) derived from both human and bovine sources. Surprisingly, there was a pregnancy-associated decrease in the total content of oligomannose chains due predominantly to a reduction in Man5GlcNAc2-R and Man6GlcNAc2-R. Man7GlcNAc2-R, which did not decrease with pregnancy, comprised a significantly greater proportion of the total oligomannose chains in pregnant vs. nonpregnant samples from both species (human; 34.6% vs. 25.9%: bovine; 14.4% vs. 7.2%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muchmore AV, Decker JM (1985) Science 229:479–81.

    Google Scholar 

  2. Hession C, Decker JM, Sherblom AP, Kumar S, Yue CC, Mattaliano RJ, Tizard R, Kawashima E, Schmeissner U, Heletky S, Chow EP, Burne CA, Shaw A, Muchmore AV (1987) Science 237:1479–84.

    Google Scholar 

  3. Tamm I, Horsfall FL (1952) J Exp Med 95:71–97.

    Google Scholar 

  4. Muchmore AV, Shifrin S, Decker JM (1987) J Immunol 138:2547–53.

    Google Scholar 

  5. Hunt JS, Peach RJ, Runisholz MC, Lynn KL, McGiven AR (1986) J Immunol Methods 91:35–43.

    Google Scholar 

  6. Muchmore AV, Decker JM, Blaese RM, Nilsson B (1984) J Exp Med 160:1672–85.

    Google Scholar 

  7. Muchmore AV, Decker JM, Blaese RM (1980) J Immunol 125:1306–11.

    Google Scholar 

  8. Durandy A, Fischer A, Le Deist F, Drouhet E, and Griscelli, C (1987) J Clin Immunol 7:400–9.

    Google Scholar 

  9. Herron MJ, Nelson RD (1988) FASEB J 2:A904.

    Google Scholar 

  10. Lehner T, Wilton JMA, Ivany L (1972) Immunology 222:775–87.

    Google Scholar 

  11. Afonso AMM, Charlwood PA, Marshall RD (1981) Carbohydr Res 89:309–19.

    Google Scholar 

  12. Serafini-Cessi F, Dall'Olio F, Malagolini N (1984) Biosci Rep 4:269–74.

    Google Scholar 

  13. Dall'Olio F, de Kanter FJJ, Van den Eijnden D, Serafini-Cessi F (1988) Carbohydr Res 178:327–32.

    Google Scholar 

  14. Williams J, Marshall RD, Van Halbeek H, Vliegenthart JFG (1984) Carbohydr Res 134:141–55.

    Google Scholar 

  15. Donald ASR, Yates AD, Soh CPC, Morgan WTJ, Watkins WM (1983) Biochem Biophys Res Commun 115:625–31.

    Google Scholar 

  16. Muchmore AV, Sathyamoorthy N, Decker J, Sherblom AP, J Leukocyte Biol, in press.

  17. Laemmli UK (1970) Nature 227:680–85.

    Google Scholar 

  18. Jelinek-Kelly S, Akiyama T, Saunier B, Tkacz JS, and Herscovics A (1985) J Biol Chem 260:2253–57.

    Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–75.

    Google Scholar 

  20. Hammond KS, Papermaster DS (1976) Anal Biochem 74:292–97.

    Google Scholar 

  21. Warren L (1959) J Biol Chem 234:1971–75.

    Google Scholar 

  22. Reinhold VN (1972) Methods Enzymol 25:244–49.

    Google Scholar 

  23. Sherblom AP, Dahlin CE (1985) J Biol Chem 260:1484–92.

    Google Scholar 

  24. Vliegenthart JFG, Dorland L, Van Halbeek H (1983) Adv Carbohydr Chem Biochem 41:209–374.

    Google Scholar 

  25. Trimble RB, Maley F (1984) Anal Biochem 141:515–22.

    Google Scholar 

  26. Hirani S, Bernasconi RJ, Rasmussen JR (1987) Anal Biochem 162:485–92.

    Google Scholar 

  27. Mellis SJ, Baenziger JU (1983) J Biol Chem 258:11546–56.

    Google Scholar 

  28. Cummings RD, Kornfeld S (1982) J Biol Chem 257:11235–40.

    Google Scholar 

  29. Kornfeld K, Reitman ML, Kornfeld R (1981) J Biol Chem 256:633–40.

    Google Scholar 

  30. Marti T, Kosen PA, Honory K, Franzblau C, Schmid K, Van Halbeek H, Gerwig GJ, Vliegenthart JFG (1984) Biochim Biophys Acta 799:305–12.

    Google Scholar 

  31. Overdijk B, Beem EP, Van Steijn GJ, Trippelvitz LAW, Lisman JJW, Paz Parente J, Cardon P, Leroy Y, Fournet B, Van Halbeek H, Mutsaers JHGM, Vliegenthart JFG (1985) Biochem J 232:637–41.

    Google Scholar 

  32. Carver JP, Grey AA, Winnik FM, Hakimi J, Ceccarini C, Atkinson PH (1981) Biochemistry 20:6600–6.

    Google Scholar 

  33. Van Halbeek H, Vliegenthart JFG, Iwase H, Li SC, and Li YT (1985) Glycoconjugate J 2:235–53.

    Google Scholar 

  34. Trimble RB, Atkinson PH (1986) J Biol Chem 261:9815–24.

    Google Scholar 

  35. Van Dijk W, Lasthuis AM, Ferwerda W (1979) Biochim Biophys Acta 584:121–28.

    Google Scholar 

  36. Marr AMS, Neuberger A, Ratcliffe WA (1971) Biochem J 122:623–31.

    Google Scholar 

  37. Dunstan DR, Grant AMS, Marshall RD, Neuberger A (1974) Proc R Soc Lond (Biol) 186:297–316.

    Google Scholar 

  38. Strel'chyonok OA, Avvakumov GV, Akhrem AA (1984) Carbohydr Res 134:133–40.

    Google Scholar 

  39. Moule SK, Peak M, Thompson S, Turner GA (1987) Clin Chim Acta 166:177–85.

    Google Scholar 

  40. Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, Stanworth D, Rademacher TW, Mizuochi T, Taniguchi T, Matsuta K, Takeuchi F, Nagano Y, Miyamoto T, Kobata A (1985) Nature 316:452–57.

    Google Scholar 

  41. Yamashita K, Ohkura T, Tachibana Y, Takasaki S, Kobata A (1984) J Biol Chem 259:10834–40.

    Google Scholar 

  42. Yamashita K, Hitoi A, Matsuda Y, Tsuji A, Katunuma N, Kobata A (1983) J Biol Chem 258:1098–107.

    Google Scholar 

  43. Bernard BA, De Luca LM, Hassell JR, Yamada KM, Olden K (1984) J Biol Chem 259:5310–15.

    Google Scholar 

  44. Mellis SJ, Baenziger JU (1983) J Biol Chem 258:11546–56.

    Google Scholar 

  45. Hickman S, Kornfeld R, Osterland CK, Kornfeld S (1972) J Biol Chem 247:2156–63.

    Google Scholar 

  46. Townsend R, Stahl P (1981) Biochem J 194:209–14.

    Google Scholar 

  47. Ezekowitz RA, Day LE, Herman GA (1988) J Exp Med 167:1034–46.

    Google Scholar 

  48. Mizuochi T, Spellman MW, Larkin M, Solomon J, Basa LJ, Feizi T (1988) Biochem J 254:599–603.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smagula, R.M., Van Halbeek, H., Decker, J.M. et al. Pregnancy-associated changes in oligomannose oligosaccharides of human and bovine uromodulin (Tamm-Horsfall glycoprotein). Glycoconjugate J 7, 609–624 (1990). https://doi.org/10.1007/BF01189081

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01189081

Key words

Navigation