Skip to main content
Log in

Use of principal components analysis in petrology: an example from the Martinsville igneous complex, Virginia, U.S.A.

Hauptkomponenten-Analyse in der Petrologie: ein Beispiel aus dem magmatischen Komplex von Martinsville, Virginia, USA

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

The Martinsville igneous complex is located in the Smith River allochthon, within the Piedmont of southwestern Virginia, U.S.A. This Ordovician complex consists of two main plutonic units: the mafic Rich Acres suite and the Leatherwood Granite. Four lithologic phases can be recognized in the Rich Acres and two are present in the Leatherwood. Major- and trace-element analyses from these six phases have been examined by principal components analyses (PCA); the first two principal components account for 86.9 percent of the total variance in the database, as opposed to about 35 percent for the first two original variables. Examination of variable loadings and sample scores for these two principal components has led to a number of observations about which original chemical variables best characterize the database. Mixing lines, control lines, and the “lever rule” can be used on bivariate PC plots as they can on bivariate plots of original chemical variables.

Results of the PCA coupled with field and petrographic relationships allow for some hypotheses to be posed concerning petrogenetic relationships among the lithologic units. Among these hypotheses are 1) some type of mixing process occurred between the Leatherwood and Rich Acres; 2) the lithologic phases within the Rich Acres form one cogenetic suite, and 3) the Rich Acres and Leatherwood apparently are not comagmatic, in contrast to earlier suggestions. PCA can also be used to place constraints on different crystal-fractionation models. Results for PCA are compared with those for discriminant function analysis (DFA); PCA indicates a compositional continuum between most groups, whereas DFA shows large compositional gaps. The results for PCA seem to be closer to the true situation.

Zusammenfassung

Der magmatische Komplex von Martinsville liegt im Smith River Allochton innerhalb des Piedmont des südstlichen Virginia, USA. Der Komplex besteht aus zwei tektonischen Haupteinheiten: die matische Rich Acres Abfolge und der Leatherwood Granit. Radiometrische Daten für den letzteren zeigen Ordovicisches Alter. Auf der Basis von unterschiedlicher Mineralogie und Textur existieren in der Rich Acres Abfolge vier lithologische Phasen, und im Leatherwood Granit zwei.

Die Spurenelemente dieser sechs Phasen wurden durch Hauptkomponenten Analyse (PCA) untersucht; die ersten beiden Hauptkomponenten machen 86,9% der totalen Varianz in der Datenbasis aus, im Gegensatz zu ungefähr 35% für die ersten zwei Originalvariablen. Untersuchung der variablen Gewichtungen und der Proben „Scores” für diese zwei Hauptkomponenten zeigen, welche ursprünglichen chemischen Variablen die Datenbasis am besten charakterisieren. Beispielsweise bestätigt PCA, daß MgO eine der wichtigen Variablen ist, die die Datenbasis charakterisieren, SiO2 jedoch nicht. Außerdem können Mischlinien, Kontrollinien und die Hebelregel auf Bivarianten von Hauptkomponenten benützt werden, ebenso wie auf bivarianten Plots die ursprüngliche chemische Variable darstellen:

Hauptkomponentenanalyse, zusammen mit den Gelände- und petrographischen Beziehungen ermöglicht es, Hypothesen bezüglich der petrogenetischen Beziehungen zwischen den lithologischen Einheiten aufzustellen. Diese umfassen:

  1. 1.

    einen Misch-Vorgang, sehr wahrscheinlich Magma-Mischung, zwischen dem Leatherwood und dem Rich Acres Komplex

  2. 2.

    die vier lithologischen Phasen innerhalb des Rich Acres Komplex bilden eine cogenetische Suite und

  3. 3.

    die Rich Acres und Leatherwood Komplexe sind offensichtlich nicht comagmatisch im Gegensatz zu früher vorgelegten Anregungen. Die PCA-Diagramme können auch dazu benützt werden, um verschiedene Kristall-Fraktionierungsmodelle einzuschränken. Die Ergebnisse von PCA werden mit denen der diskriminanten Funktionsanalyse (DFA) verglichen; PCA weist auf ein Kontinuum der Zusammen setzungen zwischen den meisten Gruppen hin, während DFA große Lücken im Spektrum der Zusammensetzungen erkennen läßt. Die Ergebnisse für PCA scheinen der tatsächlichen Situation näher zu kommen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitchison J (1990) Relative variation diagrams for describing patterns of compositional variability. Math Geol 22: 487–511

    Google Scholar 

  • Bea F, Corretge LG (1986) Petrography, geochemistry and differentiation models of lamprophyres from Sierra de Gredos, central Spain. Hercynica 2: 1–15

    Google Scholar 

  • Beard JS (1994) Tonalite (adakite?) dikes in the Martinsville igneous complex, southcentral Virginia. Geol Soc Am Abstr with Prog 26: 3

    Google Scholar 

  • Bhatia MR (1983) Plate tectonics and geochemical composition of sandstones. J Geol 91: 611–627

    Google Scholar 

  • Bisani ML, Foraone D, Clementi S, Esbensen KH (1983) Principal components and partial least-squares analysis of the geochemistry of volcanic rocks from the Aeolian Archipelago. Analyt Chim Acta 150: 129–143

    Google Scholar 

  • Conley JF (1985) Geology of the southwestern Virginia Piedmont. Virginia Div Min Res Pub 59: 33 pp

  • Conley JF (1989) Geology of the Rocky Mount, Gladehill, Penhook, and Mountain Valley quadrangles, Virginia. Virginia Div Min Res Pub 90, Part C: 15 pp

  • Conley JF, Toewe EC (1968) Geology of the Martinsville West quadrangle, Virginia. Virginia Div Min Res Rept Investig 16: 44 pp

  • Conley JF, Henika WS (1973) Geology of the Snow Creek, Martinsville East, Price, and Spray quadrangles, Virginia. Virginia Div Min Res Rept Investig 33: 71 pp

  • Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. Allen and Unwin, London

    Google Scholar 

  • Defant MJ, Drummond MS, Arthur JD, Ragland PC (1988) An example of trondhjemite petrogenesis: the Blakes Ferry Pluton, Alabama, U.S.A. Lithos 21: 161–181

    Google Scholar 

  • Fontignie D, Schilling JG (1991)87Sr/86Sr and REE variations along the easter Microplate boundaries (South Pacific); application of multivariate statistical analyses to ridge segmentation. Chem Geol 89: 209–241

    Google Scholar 

  • Lavecchia G, Stoppa F (1990) The Tyrrhenian Zone; a case of lithospheric extension control of intra-continental magmatism. Earth Planet Sci Lett 99: 336–350

    Google Scholar 

  • Le Maitre RW (1982) Numerical petrology. Elsevier, Amsterdam

    Google Scholar 

  • Odom Al, Russell GS (1975) The time of regional metamorphism of the Inner Piedmont, N. C. and Smith River allochthon: inference from whole-rock ages. Geol Soc Am Abstr with Prog 7: 522

    Google Scholar 

  • Pearce JA (1976) Statistical analysis of major element patterns in basalt. J Petrol 17: 15–43

    Google Scholar 

  • Poroshin YY (1983) Average-composition variability for basalts in volcanogenic formations. Geochem Int 20: 174–178

    Google Scholar 

  • Ragland PC (1989) Basic analytical petrology. Oxford University Press, New York

    Google Scholar 

  • Rankin DW (1975) The continental margin of eastern North America in the southern Appalachians; the opening and closing of the proto-Atlantic Ocean. In:Ostrom JH, Orville PM (eds) Tectonics and mountain ranges. Am J Sci 275A: 298–336

  • Roser BP, Korsch RJ (1988) Provenance signatures of sandstone-mudstone suites using discriminant function analysis of major-element suites. Chem Geol 67: 119–139

    Google Scholar 

  • Shapiro L (1975) Rapid analysis of silicate, phosphate, and carbonate rocks, revised edn. U.S. Geol Surv Bull 1401: 76 pp

  • Sinha AK, Hund EA, Hogan JP (1989) Paleozoic accretionary history of the North American plate margin (central and southern Appalachians). In:Hillhouse JW (ed) Deep structure and pastkinemtics of accreted terranes. Am Geophys Union Geophys Monogr 50: 219–238

  • Suzuki KK, Kamata H, Bacon CR (1993) Evolution of the caldera-forming eruption at Crater Lake, Oregon, indicated by component analysis of lithic fragments. J Geophys Res B, Solid Earth and Planets 98: 14059–14074

    Google Scholar 

  • Thy P, Esbensen KH (1993) Seafloor spreading and the ophiolitic sequences of the Troodos complex; a principal component analysis of lava and dike compositions. J Geophys Res B, Solid Earth and Planets 98: 11799–11805

    Google Scholar 

  • Upadhyaya R, Srivastava RK, Agarwal V (1988) A statistical approach to the study of an igneous suite; a case history of Tavidar volcanics. N Jb Mineral Abhand 159: 311–324

    Google Scholar 

  • Whitney PR (1992) Charnockites and granites of the western Adirondacks, New York, USA; a differentiated A-type suite. Precamb Res 57: 1–19

    Google Scholar 

  • Wilson M (1989) Igneous petrogenesis. Unwin Hyman, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 8 figures

retired

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ragland, P.C., Conley, J.F., Parker, W.C. et al. Use of principal components analysis in petrology: an example from the Martinsville igneous complex, Virginia, U.S.A.. Mineralogy and Petrology 60, 165–184 (1997). https://doi.org/10.1007/BF01173708

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01173708

Keywords

Navigation