Skip to main content
Log in

Synthesis and stability of deerite, Fe 2+12 Fe 3+6 [Si12O40](OH)10, and Fe3+⇋Al3+ substitutions at 15–28 kb

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Deerite, Fe 2+12 Fe 3+6 [Si12O40](OH)10, thus far known from ten localities in glaucophane schist terranes, was synthesized at water pressures of 20–25 kb and temperatures of 550–600 °C under the\(f_{O_2 } \) of the Ni/NiO buffer. The X-ray powder diagram, lattice constants and infrared spectrum of the synthetic phase are closely similar to those of the natural mineral. A solid solution series extends from this ferri-deerite end member to some 20 mole % of a hypothetical alumino-deerite, Fe 2+12 Al 3+6 [Si12O40](OH)10. The upper temperature breakdown of ferri-deerite to the assemblage ferrosilite +magnetite+quartz+water occurs at about 490 °C at 15 kb, and 610 °C at 25 kb fluid pressure for the\(f_{O_2 } \) of the Ni/NiO buffer. Extrapolation of these data to lower water pressures indicates that deerite can be a stable mineral only in very low-temperature, high-pressure environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrell, S.O., Bown, M.G., McKie, D.: Deerite, howieite and zussmanite, three new minerals from the Franciscan of the Laytonville district, Mendocino Co., California. Am. Mineralogist50, 278 (1965)

    Google Scholar 

  • Agrell, S.O., Gay, M.: De la deerite dans les Alpes franco-italiennes. Bull. Soc. Franc. Minéral. Crist.93, 263–264 (1970)

    Google Scholar 

  • Bancroft, G.M., Burns, R.G., Stone, A.J.: Applications of the Mössbauer effect to silicate mineralogy. — II. Iron silicates of unknown and complex crystal structures. Geochim. Cosmochim. Acta32, 547–559 (1968)

    Google Scholar 

  • Birch, F., Lecomte, P.: Temperature-pressure plane for albite composition. Am. J. Sci.258, 209–217 (1960)

    Google Scholar 

  • Black, P.M.: Mineralogy of the New Caledonian metamorphic rocks. II. Amphiboles from the Ouégoa district. Contrib. Mineral. Petrol.39, 55–64 (1973)

    Google Scholar 

  • Bocquet, J.: Carte de répartition de quelques minéraux du métamorphisme alpin dans les Alpes franco-italiennes. Eclogae Geol. Helv.64, 71–103 (1971)

    Google Scholar 

  • Bocquet, J., Forette, M.-C.: Sur une deerite de l'ensemble des calcschistes piémontais, ă Troncea (Italie). Bull. Soc. Franc. Minéral. Crist.96, 314–316 (1973)

    Google Scholar 

  • Borg, I.Y., Smith, D.K.: Calculated X-ray powder patterns for silicate minerals. Geol. Soc. Am., Mem.122 (1969)

  • Boyd, F.R., England, J.L.: Apparatus for phase equilibrium measurements at pressures up to 50 kb and temperatures up to 1750 ° C. J. Geophys. Res.65, 741–748 (1960)

    Google Scholar 

  • Brown, E.H.: Comparison of the mineralogy and phase relations of blueschists from the North Cascades, Washington, and greenschists from Otago, New-Zealand. Bull. Geol. Soc. Am.85, 333–344 (1974)

    Google Scholar 

  • Coleman, R.G.: Glaucophane schists from California and New Caledonia. Tectonophysics4, 479–498 (1967)

    Google Scholar 

  • Coleman, R.G., Lee, D.E.: Glaucophane-bearing metamorphic rock types of the Cazadero area, California. J. Petrol.4, 260–301 (1963)

    Google Scholar 

  • Coleman, R.G., Papike, J.J.: Alkali-amphiboles from the blueschists of Cazadero, California. J. Petrol.9, 105–122 (1968)

    Google Scholar 

  • Crawford, W.A., Fyfe, W.S.: Calcite-aragonite equilibrium at 100 ° C. Science144, 1569–1570 (1964)

    Google Scholar 

  • Deer, W.A., Howie, R.A., Zussman, J.: Rock-forming minerals. Vol. 2: Chain silicates. London: Longman 1963

    Google Scholar 

  • Ellenberger, F.: Etude géologique du Pays de Vanoise. Mem. explic. Carte géol. fr., 561 p., 1958

  • Ernst, W.G.: Mineral parageneses in ranciscan metamorphic rocks, Panoche Pass, California. Bull. Geol. Soc. Am.76, 879–914 (1965)

    Google Scholar 

  • Ernst, W.G., Seki, Y.: Petrologic comparison of the Franciscan and the Sambagawa metamorphic terrains. Tectonophysics4, 463–468 (1967)

    Google Scholar 

  • Eugster, H.P., Wones, D.R.: Stability relations of the ferruginous biotite, annite. J. Petrol.3, 82–125 (1962)

    Google Scholar 

  • Halferdahl, L.B.: Chloritoid: its composition, X-ray and optical properties, stability and occurrence. J. Petrol.2, 49–135 (1961)

    Google Scholar 

  • Howie, R.A.: Abstract of the paper by Agrell et al. (1965). Min. Abstracts18, 207 (1967)

    Google Scholar 

  • Johannes, W., Bell, P.M., Mao, H.K., Boettcher, R.A., Chipman, D.W., Hays, J.F., Newton, R.C., Seifert, F.: An interlaboratory comparison of piston-cylinder pressure calibration using the albite breakdown reaction. Contrib. Mineral. Petrol.32, 24–38 (1971)

    Google Scholar 

  • Keesman, I., Matthes, S., Schreyer, W., Seifert, F.: Stability of almandine in the system FeO-(Fe2O3)-Al2O3-SiO2-(H2O) at elevated pressures. Contrib. Mineral. Petrol.31, 132–144 (1971)

    Google Scholar 

  • Lacroix, A.: Les glaucophanites de la Nouvelle-Calédonie et les roches qui les accompagnent, leur composition et leur genèse. Acad. Sci. Paris, Mém. 65 (1941)

  • Langer, K.: Arbeitsvorschriften zur Silikatanalyse. Internal paper, Institut für Mineralogie, Bochum (1974)

    Google Scholar 

  • Langer, K., Bauman, P.: Micro-determination of SiO2, TiO2, Total iron (Fe2O 03 ), P2O5 and F in silicates by automatic solution photometry. Z. Anal. Chem.227, 359–368 (1975)

    Google Scholar 

  • Langer, K., Raith, M.: Infrared spectra of Al-Fe(III)-epidotes and zoisites, Ca2(Al1-pFe 3+p )Al2O(OH)[Si2O7][SiO4]. Am. Mineralogist59, 1249–1258 (1974)

    Google Scholar 

  • Langer, K., Schreyer, W.: Synthesis and stability of alumino-deerite. (Abstract). Collected abstracts IMA-IAGOD Meetings, Japan (1970)

  • Langer, K., Seifert, F.: High-pressure-high-temperature-synthesis and properties of chromium kyanite, (Al,Cr)2SiO5. Z. Anorg. Allgem. Chem.383, 29–39 (1971)

    Google Scholar 

  • Lee, D.E., Coleman, R.G., Erd, R.C.: Garnet-types from the Cazadero area, California. J. Petrol.4, 460–492 (1963)

    Google Scholar 

  • Lindsley, D.H.: Ferrosilite. Carnegie Inst. Wash. Year Book64, 148–150 (1965)

    Google Scholar 

  • Lindsley, D.H., MacGregor, I.D., Davis, B.T.C.: Synthesis and stability of ferrosilite. Carnegie Inst. Wash. Year Book63, 174–176 (1964)

    Google Scholar 

  • Lindsley, D.H., Munoz, T.L.: Ortho-clino inversion in ferrosilite. Carnegie Inst. Wash. Year Book67, 86–88 (1969)

    Google Scholar 

  • Miyashiro, A.: Metamorphism and related magmatism in plate tectonics. Am. J. Sci.272, 629–656 (1972)

    Google Scholar 

  • Ungethüm, H.: Eine neue Methode zur Bestimmung von Eisen(II) in Gesteinen und Mineralen, insbesondere auch in Bitumen-haltigen Proben. Z. Angew. Geol.11, 500–505 (1965)

    Google Scholar 

  • Stern, C.R., Wyllie, P.J.: Effect of iron absorption by noble metal capsules on phase boundaries in rock-melting experiments at 30 kb. Am. Mineralogist60, 681–689 (1975)

    Google Scholar 

  • Wenk, H.R.: Howieite, a new type of chain silicate. Am. Mineralogist59, 86–97 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langer, K., Lattard, D. & Schreyer, W. Synthesis and stability of deerite, Fe 2+12 Fe 3+6 [Si12O40](OH)10, and Fe3+⇋Al3+ substitutions at 15–28 kb. Contr. Mineral. and Petrol. 60, 271–297 (1977). https://doi.org/10.1007/BF01166801

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01166801

Keywords

Navigation