Skip to main content
Log in

Similarity and dissimilarity in posets

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The relevance of partially ordered sets (or posets) in a wide diversity of contexts in chemistry is emphasized, and the utility of distance functions (or metrics) on such posets is noted. First a notion of “scale similarity” is introduced to make comparisons within certain so-called “scaled” posets, for which there is formulated natural “comparators”, which in turn lead to associated distance functions. Beyond taking note of several chemically relevant examples of these “scaled” posets and their consequent associated similarity measures, a second chemically relevant class of so-called “shifted” posets is similarly developed, with examples. Even further extension of some aspects of the current approach is indicated, and finally the multi-posetic character of chemical periodic law is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Articles inConcepts and Applications of Molecular Similarity, eds. M.A. Johnson and G.M. Maggiora (Wiley, New York, 1990).

  2. P.G. Mezey,Shape in Chemistry (VCH, New York, 1993).

    Google Scholar 

  3. R.T. Sanderson,Chemical Periodicity (Reinhold, New York, 1960).

    Google Scholar 

  4. G. Birkhoff,Lattice Theory (Am Math. Soc., Providence, RI, 1948).

    Google Scholar 

  5. P. Crawley and R.P. Dilworth,Algebraic Theory of Lattices (Prentice-Hall, Englewood Cliffs, New Jersey, 1973).

    Google Scholar 

  6. C.S. Pierce, Am. Jour. 3 (1880) 15; 7 (1884) 180.

    Google Scholar 

  7. E. Schröder,Algebra der Logik (Leipzig, 1890–5).

  8. E. Ruch, Theor. Chim. Acta 38 (1975) 167.

    Google Scholar 

  9. See, e.g., J.P. Quirk and R. Saposnik, Rev. Econ. Stud. 29 (1962) 140.

    Google Scholar 

  10. J.P. Barthélemy, Cl. Flament and B. Monjardet on p. 721 as well as K.P. Bogart on p. 760 ofOrdered Sets, ed. I. Rival (Reidel, Dordrecht, Holland, 1982).

  11. E.C. Pielou,Ecological Diversity (Wiley, New York, 1975).

    Google Scholar 

  12. See, e.g., D'Arcy Thompson,On Growth and Form (Cambridge University Press, Cambridge, 1917).

    Google Scholar 

  13. N. Rashevsky, Bull. Math. Biophys. 4 (1956) 31.

    Google Scholar 

  14. W. Hennig,Phylogenetic Systematics (University of Illinois Press, Urbana, Illinois, 1966).

    Google Scholar 

  15. B. -O. Küppers,Molecular Theory of Evolution (Springer, Berlin, 1985).

    Google Scholar 

  16. G.C. Rota, Zeit. Wahr. Verw. Geb. 2 (1964) 340.

    Google Scholar 

  17. See, e.g., L.M. Blumenthal,Distance Geometry (Chelsea, New York, 1970).

    Google Scholar 

  18. P.G. Mezey, Int. J. Quant. Chem. 51 (1994) 255.

    Google Scholar 

  19. M. Randic, A.F. Kleiner and L.M. De Alba, J. Chem. Inf. Comp. Sci. 34 (1994) 277.

    Google Scholar 

  20. D.J. Klein, Int. J. Quant. Chem. S20 (1986) 153.

    Google Scholar 

  21. D.J. Klein and A.A. Cantu, Int. J. Quant. Chem. 8 (1974) 223.

    Google Scholar 

  22. P.G. Mezey,New Theoretical Concepts for Understanding Organic Reactions, eds. J. Bertran and I.G. Csizmada (Kluwer Academic Publ., Dordrecht, 1989) pp. 55–76.

    Google Scholar 

  23. P.G. Mezey and J. Maruani, Mol. Phys. 69 (1990) 97.

    Google Scholar 

  24. A.B. Buda, T. Aufder Deyde and K. Mislow, Angew. Chemie Int. Edn. Engl. 31 (1992) 989.

    Google Scholar 

  25. H. Zabrodsky, S. Peleg and D. Avnir, J. Am. Chem. Soc. 114 (1992) 7843.

    Google Scholar 

  26. N. Weinberg and K. Mislow, J. Math. Chem 14 (1993) 427.

    Google Scholar 

  27. G. Gilat, J. Math. Chem. 15 (1994) 197.

    Google Scholar 

  28. H. Zabrodsky and D. Avnir, J. Am. Chem. Soc. 117 (1995) 462.

    Google Scholar 

  29. N. Weinberg and K. Mislow, J. Math. Chem 17 (1995) 35.

    Google Scholar 

  30. I. Gutman and M. Randic, Chem. Phys. Lett. 47 (1977) 15.

    Google Scholar 

  31. E. Ruch and I. Gutman, J. Comb. Inf. Sys. Sci. 4 (1979) 285.

    Google Scholar 

  32. E. Ruch and A. Mead, Theor. Chim. Acta 41 (1976) 95.

    Google Scholar 

  33. E. Ruch, Acta Appl. Math. 30 (1993) 67.

    Google Scholar 

  34. P.M. Alberti and A. Uhlmann,Stochasticity and Partial Order (VEB Deutscher Verlag, Berlin, 1981).

    Google Scholar 

  35. E. Ruch and A. Schönhofer, Theor. Chim. Acta 19 (1970) 225.

    Google Scholar 

  36. I. Gutman, B. Ruscić, N. Trinajstic and C.F. Wilcox, Jr., J. Chem. Phys. 62 (1975) 3399.

    Google Scholar 

  37. D. Bonchev and N. Trinajstic, J. Chem. Phys. 67 (1977) 4517 and Int. J. Quant. Chem. S12 (1978) 293.

    Google Scholar 

  38. S. El-Basil and M. Randic, Adv. Quant. Chem. 24 (1992) 239.

    Google Scholar 

  39. S. Lele, Am. J. Phys. Anthropol. 85 (1991) 407.

    Google Scholar 

  40. S. Lele and J.T. Richtsmeier, Am. J. Phys. Anthropol. 87 (1992) 49.

    Google Scholar 

  41. See, e.g., for many advanced calculus texts, ref.[28], or R.F.W. Bader, T.T. Nguyen-Dang and Y. Tal, J. Chem. Phys. 90 (1979) 4316.

  42. P.G. Mezey, J. Chem. Phys. 78 (1983) 6182.

    Google Scholar 

  43. H. Frauenfelder, F. Parak and R.D. Young, Ann. Rev. Biophys. Chem. 17 (1988) 451.

    Google Scholar 

  44. T. Noguti and N. Go, Proteins 5 (1989) 125.

    Google Scholar 

  45. M. Vasquez, G. Nemethy and H.Z. Scheraga, Chem. Rev. 94 (1994) 2183.

    Google Scholar 

  46. G.A. Arteca and P. G. Mezey, J. Comp. Chem 9 (1988) 554.

    Google Scholar 

  47. G. M. Crippen, A. S. Smellie and J.W. Ping, J. Chem. Inf. Comp. Sci. 28 (1988) 125.

    Google Scholar 

  48. M. Randic, B. Jerman-Blazic and N. Trinajstic, Comput. Chem 14 (1990) 237.

    Google Scholar 

  49. P.G. Mezey, J. Chem. Inf. Comp. Sci. 32 (1992) 650

    Google Scholar 

  50. F.R. Gantmacher,Matrix Theory (Chelsea, New York, 1959).

    Google Scholar 

  51. F. Buckley and F. Harary,Distance in Graphs (Addison-Wesley, Reading, Massachusetts, 1989)

    Google Scholar 

  52. D.J. Klein and M. Randic, J. Math. Chem. 12 (1993) 81.

    Google Scholar 

  53. P.G. de Gennes,Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1979).

    Google Scholar 

  54. D.J. Klein and W.A. Seitz,Chemical Applications of Topology and Graph Theory, ed. R.B. King (Elsevier, Amsterdam, 1983) pp. 430–445.

    Google Scholar 

  55. S.I. Kuchanov, S.V. Korolev and S.V. Panyukov, Adv. in Chem. Phys. 72 (1988) 115.

    Google Scholar 

  56. B. E. Eichinger, Macromol. 13 (1980) 1.

    Google Scholar 

  57. G. Wei and B.E. Eichinger, Macromol. 22 (1989) 3429.

    Google Scholar 

  58. M. Kunz, Collect. Czech. Chem. Commun. 54 (1989) 2148.

    Google Scholar 

  59. M. Kunz, J. Math. Chem. 13 (1993) 145.

    Google Scholar 

  60. R. Kadison, Proc. Am. Math. Soc. 2 (1951) 505.

    Google Scholar 

  61. S. Sherman, Am. J. Math. 73 (1951) 227.

    Google Scholar 

  62. R. Bhatia, Proc. Am. Math. Soc 96 (1986) 41.

    Google Scholar 

  63. L.A. Zadeh, Inf. Control 8 (1965) 338.

    Google Scholar 

  64. D.J. Klein, J. Chem. Ed. 69 (1992) 691.

    Google Scholar 

  65. See, e.g.,Aromaticity, Pseudo-Aromaticity, Anti-Aromaticity, eds. E.D. Bergmann and B. Pullman (Israel Acad. Sci., Jerusalem, 1971).

  66. P.J. Garratt, Aromaticity (McGraw-Hill, London, 1971; Wiley, New York, 1986).

    Google Scholar 

  67. D. Lewis and D. Peters,Facts and Theories of Aromaticity (Macmillan, London, 1975).

    Google Scholar 

  68. D. Lloyd,Non-benzenoid Conjugated Carbocyclic Compounds (Elsevier, Amsterdam, 1984).

    Google Scholar 

  69. B.Ya. Simkin, V.I. Minkin and M.N. Glukhovtsev,Advances in Heterocyclic Chemistry 56, ed. A.R. Katritzky (Academic Press, New York, 1993) pp. 303–428.

    Google Scholar 

  70. G. Birkhoff, Ann. Math. 33 (1932) 329.

    Google Scholar 

  71. See, e.g., S.T. Rachev,Probability Metrics and the Stability of Stochastic Models (Wiley, New York, 1991).

    Google Scholar 

  72. A.N. Kolgomorov, Vestnik M.G.U. 10 (1953) 28.

    Google Scholar 

  73. D.J. Fivel, Phys. Rev. A50 (1994) 2108.

    Google Scholar 

  74. A. De Luca and S. Termini, Inf. Control 20 (1972) 301.

    Google Scholar 

  75. J. Knopfmacher, J. Math. Anal. Appl. 49 (1975) 529.

    Google Scholar 

  76. See, e.g., P.L. Chau and P.M. Dean, J. Mol. Graphics 5 (1987) 97.

    Google Scholar 

  77. J. Gasteiger, X. Li, C. Rudolph, J. Sadauski and J. Zupan, J. Am. Chem. Soc. 116 (1994) 4608.

    Google Scholar 

  78. G.H. Hardy, J.E. Littlewood and G. Polya, Messenger Math. 58 (1929) 145.

    Google Scholar 

  79. R. F. Muirhead, Proc. Edin. Math. Soc. 21 (1903) 144.

    Google Scholar 

  80. See, e.g., J.B. Kruskal, SIAM Rev. 25 (1983) 201, and Theory and Practice of Sequence Comparison, eds. D. Sankoff and J. Kruskal (Addison-Wesley, Reading, Massachusetts, 1983) chap. l.

    Google Scholar 

  81. R.W. Hamming, Bell Syst. Tech. J. 29 (1950) 147.

    Google Scholar 

  82. See, e.g., W.C. Herndon and S.H. Bertz, J. Comp. Chem. 8 (1987) 367.

    Google Scholar 

  83. V.I. Levenshtein, Dok. Akad. Nauk SSSR 163 (1965) 845 [Engl. transl.: Cybern. Contr. Theory 10 (1966) 707].

    Google Scholar 

  84. V.I. Levenshtein, Problemy Peredachi Informatsii 7 (1971) 30.

    Google Scholar 

  85. J.G. Kemeny, Daedalus 88 (1959) 577.

    Google Scholar 

  86. C. Jochum, J. Gasteiger, I. Ugi and J. Dugundji, Zeit. Naturforsch. b37 (1982) 1205.

    Google Scholar 

  87. J. Dugundji and I. Ugi, Top. Curr. Chem. 39 (1973) 19.

    Google Scholar 

  88. M. Johnson,Graph Theory and Its Applications, eds. Y. Alavi et al. (Wiley, New York, 1985) 457–469.

    Google Scholar 

  89. I. Ugi et al., in ref. [ l], pp. 239–288.

  90. H. Kolbe, Liebigs Ann. Chem. 75 (1850) 211.

    Google Scholar 

  91. F.O. Rice and E. Teller, J. Chem. Phys. 6 (1938) 489.

    Google Scholar 

  92. R. Ponec, Zeit. Phys. Chem. 268 (1987) 1180.

    Google Scholar 

  93. J.W. Essam, J.W. Kennedy, M. Gordon and P. Whittle, J. Chem. Soc. Faraday II73 (1977) 1289.

    Google Scholar 

  94. J.W. Kennedy and M. Gordon, Ann. N.Y. Acad. Sci. 319 (1979) 331.

    Google Scholar 

  95. T. Bayley, Phil. Mag. Sec 5,13 (1882) 26.

    Google Scholar 

  96. J. Thomsen, Zeit. Anorg. Chem. 9 (1895) 190.

    Google Scholar 

  97. I.D. Margary, Phil. Mag. Sec. 6,42 (1921) 287.

    Google Scholar 

  98. N. Bohr, Nature 112 (1923) 29.

    Google Scholar 

  99. M. Randic, J. Chem. Ed. 69 (1992) 713.

    Google Scholar 

  100. J.R. Dias, J. Chem. Inf. Comp. Sci 22 (1982) 15.

    Google Scholar 

  101. J.R. Dias, J. Math. Chem 4 (1990) 17.

    Google Scholar 

  102. R. Hefferlin, R. Campbell, D. Gimbell, H. Kuhlman and T. Cayton, J. Quant. Spec. Rad. Trans. 21 (1979) 315.

    Google Scholar 

  103. R. Hefferlin and H. Kuhlman, J. Quant. Spec. Rad. Trans 24 (1980) 379.

    Google Scholar 

  104. R. Hefferlin, G.V. Zhuvkin, K.E. Caviness and P.J. Duerksen, J. Quant. Spec. Rad. Trans. 32 (1984) 257.

    Google Scholar 

  105. V.V. Kafarov, I.N. Dorokhov, V.N. Vetokhin and L.P. Volkov, Dokl. Akad. Nauk SSSR 292 (1987) 118, and earlier references therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, D.J. Similarity and dissimilarity in posets. J Math Chem 18, 321–348 (1995). https://doi.org/10.1007/BF01164664

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01164664

Keywords

Navigation