Skip to main content
Log in

Piemontite from the manganiferous hematite ore deposits in the Tokoro Belt, Hokkaido, Japan

Piemontit aus den manganreichen Hematit-Lagerstätten des Tokoro-Gürtels, Hokkaido, Japan

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Piemontites occur in manganiferous hematite ore deposits and radiolarian chest in the Nikoro Group, Tokoro Belt, eastern Hokkaido, Japan. The piemontite-bearing chest and ore bodies have suffered low-grade metamorphism of high pressure intermediate type. In ore bodies, piemontite forms veinlets with quartz and/or pumpellyite-(Mn2+) containing Mn3+ in Y site. In chest, piemontite occurs not only in veinlets but also in radiolarian tests with pumpellyite-(Mn2+). The mineral assemblages characterized by piemontite, pumpellyite-(Mn2+), okhotskite, hematite and bixbyite indicate that chest and ore deposits were metamorphosed under extremely highfO2 condition. Some piemontites in ores contain as much as 1.12 Mn3+, and the sum of Mn3+ and Fe3+ attains 1.46 per formula unit, whereas piemontites in chest contain less (Mn3+ + Fe3+). This difference in compositions may essentially be ascribed to the difference in the host rock compositions. On the other hand, Mn3+ and Fe3+ contents of piemontites in ores vary considerably by Al ⇌ (Mn3+, Fe3+) and Mn3+ ⇌ Fe3+ substitutions. This phenomenon may be interpreted in terms of the local availability of Mn3+ and Fe3+ in the host rocks.

The low-temperature stability limit of piemontite is evaluated from the relations between piemontite and pumpellyite and from the estimated P-T conditions of piemontite crystallization in chert and ore deposits.

Zusammenfassung

Piemontite treten in manganführenden Hämatitlagerstätten und Radiolariten in der Nikoro-Gruppe des Tokoro-Gürtels, Ost-Hokkaido, Japan; auf. Die Piemontit-füh-renden Radiolarite und Erzkörper zeigen eine niedrig temperierte (Low-grade Bereich), Hochdruck (intermediate-type)-Metamorphose. In den Erzkörpern bildet Piemontit Gänge zusammen mit Quarz und/oder Mn3+ (in der Y-Position)-führendem Pumpellyit-(Mn2+). In den Radiolariten tritt Piemontit nicht nur in Gängen, sondern auch zusammen mit Pumpellyit-(Mn2+) in Radiolarien auf. Die Mineralparagenese Piemontit, Pumpellyit-(Mn2+), Okhotskit, Hämatit und Bixbyit deutet darauf hin, daß die Radiolarite und Erzlagerstätten unter hohenfO2-Bedingungen metamorphisiert worden sind.

In den Erzkörpern enthalten einige Piemontite bis zu 1.12 Mn3+ und die Summe von Mn3+ und Fe3+ erreicht 1.46 pro Formeleinheit. Die Piemontite in den Radiolariten zeigen geringere Mn3+ + Fe3+ Gehalte. Diese Unterschiede in der Zusammensetzung sind auf die unterschiedlichen Trägergesteine zurückzuführen. Außerdem variieren die Mn3+ und Fe3+-Gehalte der Piemontite in den Erzkörpern deutlich auf Grund der Substitution von Al ⇌ (Mn3+, Fe3+) und Mn3+ ⇌ Fe3+. Dieses Phänomen kann durch die lokale Verfügbarkeit von Mn3+ und Fe3+ im Trägergestein interpretiert werden.

Die niedrige Temperatur-Stabilität von Piemontit kann durch die Assoziation Piemontit-Pumpellyit und durch die bestimmten P-T-Bedingungen der Piemontit-Kristallisation in den Radiolariten und Erzlagerstätten abgeschätzt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anastasiou P, Langer K (1977) Synthesis and physical properties of piemontite Ca2Al3-pMn3+ p(Si2O7/SiO4/O/OH). Contrib Min Pet 60: 225–245

    Google Scholar 

  • Bence A, Albee AL (1968) Empirical correction factors for the electron microanalysis of silicates and oxides. J Geol 76: 382–403

    Google Scholar 

  • Bilgrami SA (1956) Manganese silicate minerals from Chikla, Bhandara District, India. Min Mag 31: 236–244

    Google Scholar 

  • Burns RG, Strens GJ (1967) Structural interpretation of polarized absorption spectra of the Al-Fe-Mn-Cr epidotes. Min Mag 36: 204–226

    Google Scholar 

  • Cooper AF (1971) Piemontite schists from Haast River, New Zealand. Min Mag 38: 64–71

    Google Scholar 

  • Deer WA, Howie RA, Zussmann J (1962) Rock forming minerals, Vol 1. 333 pp. Longmans, London

    Google Scholar 

  • Dollase WA (1969) Crystal structure and cation ordering of piemontite. Am Min 54: 710–717

    Google Scholar 

  • Grapes RH, Hashimoto S (1978) Manganiferous schists and their origin, Hidaka Mountains, Hokkaido, Japan. Contrib Min Pet 68: 23–35

    Google Scholar 

  • Hörmann PK, Raith M (1971) Optische Daten, Gitterkonstanten, Dichte and magnetische Eigenschaften von Al-Fe(III)-Epidoten. Neues Jahrb Min Abh 116: 41–61

    Google Scholar 

  • Kato A, Matsubara S, Yamamoto R (1981) Pumpellyite-(Mn2+) from the Ochiai Mine, Yamanashi Prefecture, Japan. Bull Min 104: 396–399

    Google Scholar 

  • Kawachi Y, Grapes RH, Coombs DS, Dowse M (1983) Mineralogy and petrology of a piemontite-bearing schist, western Otago, New Zealand. J Metam Geol 1: 353–372

    Google Scholar 

  • Keskinen M (1981) Petrochemical investigation of the Shadow Lake piemontite zone, Eastern Sierra Nevada, California. Am J Sci 281: 896–921

    Google Scholar 

  • ——Liou JG (1979) Synthesis and stability relations of the Mn-Al piemontite, Ca2Al2MnSi3O12(OH). Am Min 64: 317–328

    Google Scholar 

  • Liou JG (1973) Synthesis and stability relations of epidote, Ca2Al2MnSi3O12(OH). J Pet 14: 381–413

    Google Scholar 

  • —— (1979) Zeolite facies metamorphism of basaltic rocks from the East Taiwan Ophiolite. Am Min 64: 1–14

    Google Scholar 

  • Mottana A, Griffin WL (1986) The crystal chemistry of piemontite from the type-locality (St.Marcel, Val d'Aosta, Italy). Rep. 13th-IMA Meeting Varna, in press.

  • Nayak VK, Neuvonen KJ (1963) Some manganese minerals from India. Bull Comm Geol Finlande 212: 23–37

    Google Scholar 

  • Reinecke T (1986a) Crystal chemistry and reactions of piemontites and thulites from highly oxidized low grade metamorphic rocks at Vitali, Andros Island, Greece. Contrib Min Pet 93: 56–76

    Google Scholar 

  • —— (1986b) Phase relationships of sursassite and other Mn-silicates in highly oxidized lowgrade, high-pressure metamorphic rocks from Evvia and Andros Islands, Greece. Contrib Min Pet 94: 110–126

    Google Scholar 

  • Sakakibara M (1986) A newly discovered high-pressure terrane in eastern Hokkaido, Japan. J Metam Geol 4: 401–408

    Google Scholar 

  • Schiffman P, Liou JG (1983) Synthesis of Fe-pumpellyite and its stability relations. J Metam Geol 1: 91–101

    Google Scholar 

  • Smith D, Albee AL (1967) Petrology of a piemontite-bearing gneiss, San Gorgonio Pass, California. Contrib Min Pet 16: 198–203

    Google Scholar 

  • Strens RGJ (1964) Synthesis and properties of piemontite. Nature 201: 175–176

    Google Scholar 

  • —— (1966) Properties of the Al-Fe-Mn epidotes. Min Mag 35: 928–944

    Google Scholar 

  • Togari K, Akasaka M (1987) Okhotskite, a new mineral of an Mn3+-dominant member of the pumpellyite group, from the Kokuriki mine, Hokkaido, Japan. Min Mag 51: 611–614

    Google Scholar 

  • —— ——Kawaguchi Y (1986) Inesite from the Kokuriki mine, Hokkaido, Japan. Jour Fac Sci, Hokkaido Univ Ser 4, 21: 669–677

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akasaka, M., Sakakibara, M. & Togari, K. Piemontite from the manganiferous hematite ore deposits in the Tokoro Belt, Hokkaido, Japan. Mineralogy and Petrology 38, 105–116 (1988). https://doi.org/10.1007/BF01164315

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01164315

Keywords

Navigation